• Title/Summary/Keyword: lettuce.

Search Result 970, Processing Time 0.026 seconds

Antibiotic Uptake Reducing Effect of Zeolite and Shell Meal Fertilizer Amendment for Lettuce (Lactuca sativa L.) Cultivation Fertilized with Chicken Manure Compost

  • Seo, Youngho;Lim, Soojeong;Choi, Seungchul;Heo, Sujeong;Yoon, Byeongsung;Park, Younghak;Hong, Daeki
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.51 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • The veterinary antibiotics treated to livestock have a potential risk to reach to soil and water environment, and eventually be taken up by plants. The objective of the study was to investigate the effect of zeolite and shell meal fertilizer amendment on antibiotic uptake by plant when veterinary antibiotics in chicken manure compost were applied to agricultural land. Model antibiotics used in the study were chlortetracycline (CTC), tylosin (TYL), and sulfamethazine (SMT). Chlortetracycline level in lettuce was decreased to less than $0.08ug\;kg^{-1}$ by application of zeolite as compared with about $0.26ug\;kg^{-1}$ for control without amendment on 33 days after transplanting. Tylosin was not detected for all the treatment. Sulfamethazine levels in lettuce ranged from 11 to $19{\mu}g\;kg^{-1}$ on a fresh weight basis and gradually decreased with time. Zeolite application decreased the SMT levels in lettuce by greater extent than shell meal fertilizer amendments. Results from the 61-d greenhouse experiment imply that application of zeolite at a rate of $1.5Mg\;ha^{-1}$ or shell meal fertilizer at a rate of $2.0Mg\;ha^{-1}$ can reduce CTC and SMT concentration in lettuce cultivated in soil fertilized with antibiotic-contaminated chicken manure compost.

Effect of Surfactant Addition in Nutrient Solution on Mineral Nutrient Uptake and Growth of Lettuce in DFT Culture (계면 활성제 처리가 수경재배 상추의 무기이온 흡수 및 생육에 미치는 영향)

  • Choi Ki Young;Yang Eun Young;Moon Byung-Woo;Seo Tae Cheol
    • Journal of Bio-Environment Control
    • /
    • v.13 no.4
    • /
    • pp.240-244
    • /
    • 2004
  • This study was conducted to evaluate the effect of different surfactants on the fertilizer reduction and increase of the mineral nutrients uptake of lettuce (Latuca sativa L. 'Hanbatchungchima') in deep flow technique culture. The measured items from lettuce leaves expanded fully were growth, photosynthetic and transpiration rate, and mineral nutrient content K, Ca and Mg, respectively. The highest growth were observed at $0.3mg{\cdot}L^{-1}$ polyvinyl alcohol (PV4-95) treatment, including lettuce grown in the half strength of nutrient solution. The highest photosynthetic rate, transpiration rate and mineral nutrient content were observed at $0.3mg{\cdot}L^{-1}$ calcium lignosulfate (CLS) treatment. Therefore, high-quality leaf lettuce production could be achieved by apply proper surfactants PVA-95 and CLS, which can cut down the total amount of fertilizer and increase uptake of mineral nutrients.

The Investigation for the Effects of Citric Acid on the Uranium Transfer into the Plants by the Pilot Scale Feasibility Test (파일럿 규모의 실증실험 사례를 통한 구연산의 우라늄 식물 전이 효과 규명)

  • Han, Yikyeong;Lee, Minhee
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.146-155
    • /
    • 2016
  • The field feasibility tests for a phytoextraction process were performed to identify the effect of citric acid as a chelate on the uranium (U) transfer into the plant for the naturally U contaminated soil in Duckpyeongri, Korea. For the feasibility tests, lettuce and Chinese cabbage were cultivated for 49 days on four testing grounds ($1m{\times}1m{\times}0.5m$ in each) in 2016. The citric acid solution was added to two testing grounds (one for lettuce and the other for Chinese cabbage) increasing the U transfer in two crop plants and their results were compared to those without the citric acid solution. When without the citric acid solution, the U concentration of plant after the cultivation was low (< $45{\mu}g/kg$ for leaves and < $450{\mu}g/kg$ for roots). However, with the addition of 50 mM citric acid solution, the U concentration of lettuce leaves and roots increased by 24 times and 1.8 times, and the U concentration of Chinese cabbage leaves and roots increased by 86.7 times and 5.4 times. The absolute accumulated U amount (${\mu}g$) in lettuce and Chinese cabbage also increased by 8.7 times and 50 times, compared to those without citric acid solution. Less than 8% of the U amount of exchangeable/carbonate phases was removed by using the lettuce and Chinese cabbage when the citric acid solution was not applied. However 52% and 66% of the U amount in exchangeable/carbonate phases were removed by the lettuce and the Chinese cabbage when the citric acid solution was added. The effect of the citric acid on the U transfer capability into the plants was quantitatively investigated by the field feasibility test, suggesting that U existing as exchangeable/carbonate phase in soil can be successfully removed by the phytoextraction process using Chinese cabbage with citric acid.

Effect of Nitric Oxide on Paraquat-Tolerance in Lettuce Leaves (상추잎의 Paraquat 내성에 미치는 Nitric oxide의 영향)

  • Lee, Jee-Na;Hong, Jung-Hee
    • Journal of Environmental Science International
    • /
    • v.20 no.12
    • /
    • pp.1509-1519
    • /
    • 2011
  • The protective effect of nitric oxide (NO) on the antioxidant system under paraquat(PQ) stress was investigated in leaves of 8-week-old lettuce (Lactuca sativa L.) plants. PQ stress caused a decrease of leaf growth including leaf length, width and weight. Application of NO donor, sodium nitroprusside (SNP), significantly alleviated PQ stress induced growth suppression. SNP permitted the survival of more green leaf tissue preventing chlorophyll content reduction and of higher quantum yield for photosystem II than in non-treated controls under PQ exposure, suggesting that NO has protective effect on chloroplast membrane in lettuce leaves. Flavonoids and anthocyanin were significantly accumulated in the leaves upon PQ exposure. However, the rapid increase of these compounds was alleviated in the SNP treated leaves. PQ treatment resulted in lipid peroxidation and induced accumulation of hydrogen peroxide ($H_2O_2$) in the leaves, while SNP prevented PQ induced increase in malondialdehyde (MDA) and $H_2O_2$. These results demonstrate that SNP serves as an antioxidant agent able to scavenge $H_2O_2$ to protect plant cells from oxidative damage. The activities of two antioxidant enzymes that scavenge reactive oxygen species, superoxide dismutase (SOD) and catalase (CAT) in lettuce leaves in the presence of NO donor under PQ stress were higher than those under PQ stress alone. Application of 2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), a specific NO scavenger, to the lettuce leaves arrested SNP mediated protective effect on leaf growth, photosynthetic pigment and antioxidant systems. However, PTIO had little effect on lettuce leaves under PQ stress compared with that of PQ stress alone. The obtained data suggest that the damage caused by PQ stress is in part due to increased generation of active oxygen by maintaining increased antioxidant enzyme activities and SNP protects plants from oxidative stress. From these results it is suggested that NO might act as a signal in activating active oxygen scavenging system that protects plants from oxidative damage induced by PQ stress and thus confer PQ tolerance.

Stable expression and characterization of brazzein, thaumatin and miraculin genes related to sweet protein in transgenic lettuce (감미단백질 관련 브라제인, 타우마틴 및 미라쿨린 유전자를 이용한 형질전환 상추 육성 및 발현분석)

  • Jung, Yeo Jin;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.45 no.3
    • /
    • pp.257-265
    • /
    • 2018
  • Sweetener is one of the additives that makes you feel sweet. Artificial sweeteners and sugar are typical examples, and sweetness proteins with sweetness characteristics have been widely studied. These studies elucidated the transformation lettuce cells with Agrobacterium method for stable production of natural sweet proteins, brazzein, thaumatin, and miraculin. In this paper, we report use of a plant expression system for production of sweet proteins. A synthetic gene encoding sweet proteins was placed under the control of constitutive promoters and transferred to lettuce. High and genetically stable expression of sweetener was confirmed in leaves by RT-PCR and Western blot analysis. Sweet proteins expressed in transgenic lettuce had sweetness-inducing activity. Results demonstrate recombinant sweet proteins correctly processed in transgenic lettuce plants, and that this production system could be a viable alternative to production from the native plant.

Intraplant Variations of Sesquiterpene Lactone Content in Lettuce Genetic Resources Grown in Two Cultivation Seasons

  • Assefa, Awraris Derbie;Choi, Susanna;Sung, Jung-Sook;Hur, On-Sook;Ro, Na-Young;Lee, Sok Young;Lee, Ho-Sun;Lee, Jae Eun;Rhee, Ju-Hee
    • Korean Journal of Plant Resources
    • /
    • v.31 no.5
    • /
    • pp.538-546
    • /
    • 2018
  • Inflorescence, stem, and leaf samples of lettuce grown in a greenhouse in spring and autumn seasons were assayed for sesquiterpene lactones (SLs) content by high performance liquid chromatography. The concentrations of SLs were significantly higher in the inflorescences followed by upper leaf and stem compared to the other plant parts in most of the samples. SLs content (sum of lactucin and lactucopicrin) in various tissues of lettuce cultivated in spring season varied from 5.7 to 22.5 fold ranging from $27.4{\mu}g/g$ dry weight (DW) in the upper stem (cultivar "PI 176588") as the lowest to as high as $2,292.0{\mu}g/g$ DW in the inflorescence (cultivar "709849-1"). During autumn cultivation, the concentration of SLs varied from 2.0 to 14.4 fold ranging from as low of $32.4{\mu}g/g$ DW in the lower stem (cultivar "PI176588") to as high of $838.0{\mu}g/g$ DW in the upper leaf (cultivar "Dambaesangchu"). Higher lactucin (1.2 to 5.6 fold) and lactucopicrin (1.1 to 3.9 fold) concentration was observed during spring compared to autumn cultivation in most of the samples. SLs content in various organs of lettuce increases from the basal plant part going upwards. As lactucin and lactucopicrin are the major SLs which affects the sensory property of lettuce, their quantitative variation in the lettuce cultivars is useful for breeding new varieties with better consumer acceptance.

Effects of sewage sludge Application on the Growth of Lettuce (Lactuca sativa L.) (상추의 생육에 대한 도시하수 슬러지의 영향)

  • Lee, Sang-Uk;Yoon, Wha-Mo;Oh, In-Hye
    • The Journal of Natural Sciences
    • /
    • v.9 no.1
    • /
    • pp.39-44
    • /
    • 1997
  • This study was aimed to observe the effects of municipal sewage sludge as nutrients on the growth of Lettuce. The effects of heavy metal components of the sludge were also observed. Municipal sewage sludge from Taejon City were treated to the soil of PaiChai University Farm in order to make gradient of nitrogen concentration in soil among 6 experimental groups. Results are as follows ;The longest leaves and roots were produced in control pot, in which urea was supplied as nitrogen source to the soil. Any other sludge-treated groups produced shorter leaves and roots than control group, but the more sewage sludge treated the longer leaves and heavier vegetables were observed. No differences were observed among from 6 experimental groups in the view of N, K, Ca and Mg contents. But P contents in leaves from 6 groups varied. Zn content of Lettuce when was 65.8 mg/kg when it grew with sludge 200%. The groups treated with sludge 200% produced the vegetables of highest Zn contents. Accumulation of Zn, Mn and Cd was more heavier in Lettuce than in Altari radish. Accumulation of Zn, Mn, Cu and Cd in lettuce was not heavier than natural contents of those in market vegetables.

  • PDF

Extended latex proteome analysis deciphers additional roles of the lettuce laticifer

  • Cho, Won-Kyong;Chen, Xiong-Yan;Rim, Yeong-Gil;Chu, Hyo-Sub;Jo, Yeon-Hwa;Kim, Su-Wha;Park, Zee-Yong;Kim, Jae-Yean
    • Plant Biotechnology Reports
    • /
    • v.4 no.4
    • /
    • pp.311-319
    • /
    • 2010
  • Lettuce is an economically important leafy vegetable that accumulates a milk-like sap called latex in the laticifer. Previously, we conducted a large-scale lettuce latex proteomic analysis. However, the identified proteins were obtained only from lettuce ESTs and proteins deposited in NCBI databases. To extend the number of known latex proteins, we carried out an analysis identifying 302 additional proteins that were matched to the NCBI non-redundant protein database. Interestingly, the newly identified proteins were not recovered from lettuce EST and protein databases, indicating the usefulness of this hetero system in MudPIT analysis. Gene ontology studies revealed that the newly identified latex proteins are involved in many processes, including many metabolic pathways, binding functions, stress responses, developmental processes, protein metabolism, transport and signal transduction. Application of the non-redundant plant protein database led to the identification of an increased number of latex proteins. These newly identified latex proteins provide a rich source of information for laticifer research.

Characteristics of a Lettuce mosaic virus Isolate Infecting Lettuce in Korea

  • Lim, Seungmo;Zhao, Fumei;Yoo, Ran Hee;Igori, Davaajargal;Lee, Su-Heon;Lim, Hyoun-Sub;Moon, Jae Sun
    • The Plant Pathology Journal
    • /
    • v.30 no.2
    • /
    • pp.183-187
    • /
    • 2014
  • Lettuce mosaic virus (LMV) causes disease of plants in the family Asteraceae, especially lettuce crops. LMV isolates have previously been clustered in three main groups, LMV-Yar, LMV-Greek and LMV-RoW. The first two groups, LMV-Yar and LMV-Greek, have similar characteristics such as no seed-borne transmission and non-resistance-breaking. The latter one, LMV-RoW, comprising a large percentage of the LMV isolates contains two large subgroups, LMV-Common and LMV-Most. To date, however, no Korean LMV isolate has been classified and characterized. In this study, LMV-Muju, the Korean LMV isolate, was isolated from lettuce showing pale green and mottle symptoms, and its complete genome sequence was determined. Classification method of LMV isolates based on nucleotide sequence divergence of the NIb-CP junction showed that LMV-Muju was categorized as LMV-Common. LMV-Muju was more similar to LMV-O (LMV-Common subgroup) than to LMV-E (LMV-RoW group but not LMV-Common subgroup) even in the amino acid domains of HC-Pro associated with pathogenicity, and in the CI and VPg regions related to ability to overcome resistance. Taken together, LMV-Muju belongs to the LMV-Common subgroup, and is expected to be a seed-borne, non-resistance-breaking isolate. According to our analysis, all other LMV isolates not previously assigned to a subgroup were also included in the LMV-RoW group.

Utilization Efficiencies of Electric Energy and Photosynthetically Active Radiation of Lettuce Grown under Red LED, Blue LED and Fluorescent Lamps with Different Photoperiods

  • Lee, Hye In;Kim, Yong Hyeon
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.279-286
    • /
    • 2013
  • Purpose: This study was conducted to analyze the utilization efficiencies of electric energy and photosynthetically active radiation of lettuce grown under red LED, blue LED and fluorescent lamps with different photoperiods. Methods: Red LED with peak wavelength of 660 nm and blue LED with peak wavelength of 450 nm were used to analyze the effect of three levels of photoperiod (12/12 h, 16/8 h, 20/4 h) of LED illumination on light utilization efficiency of lettuce grown hydroponically in a closed plant production system (CPPS). Cool-white fluorescent lamps (FL) were used as the control. Photosynthetic photon flux, air temperature and relative humidity in CPPS were maintained at 230 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, $22/18^{\circ}C$ (light/darkness), and 70%, respectively. Electric conductivity and pH were controlled at 1.5-1.8 $dS{\cdot}m^{-1}$ and 5.5-6.0, respectively. The light utilization efficiency based on the chemical energy converted by photosynthesis, the accumulated electric energy consumed by artificial lighting sources, and the accumulated photosynthetically active radiation illuminated from artificial lighting sources were calculated. Results: As compared to the control, we found that the accumulated electric energy consumption decreased by 75.6% for red LED and by 70.7% for blue LED. The accumulated photosynthetically active radiation illuminated from red LED and blue LED decreased by 43.8% and 33.5%, respectively, compared with the control. The electric energy utilization efficiency (EEUE) of lettuce at growth stage 2 was 1.29-2.06% for red LED, 0.76-1.53% for blue LED, and 0.25-0.41% for FL. The photosynthetically active radiation utilization efficiency (PARUE) of lettuce was 6.25-9.95% for red LED, 3.75-7.49% for blue LED, and 2.77-4.62% for FL. EEUE and PARUE significantly increased with the increasing light period. Conclusions: From these results, illumination time of 16-20 h in a day was proposed to improve the light utilization efficiency of lettuce grown in a plant factory.