• Title/Summary/Keyword: lethal target

Search Result 57, Processing Time 0.033 seconds

Radio-Sensitization by Piper longumine of Human Breast Adenoma MDA-MB-231 Cells in Vitro

  • Yao, Jian-Xin;Yao, Zhi-Feng;Li, Zhan-Feng;Liu, Yong-Biao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3211-3217
    • /
    • 2014
  • Background: The current study investigated the effects of Piper longumine on radio-sensitization of human breast cancer MDA-MB-231 cells and underlying mechanisms. Materials and Methods: Human breast cancer MDA-MB-231 cells were cultured in vitro and those in logarithmic growth phase were selected for experiments divided into four groups: control, X-ray exposed, Piper longumine, and Piper longumine combined with X-rays. Conogenic assays were performed to determine the radio-sensitizing effects. Cell survival curves were fitted by single-hit multi-target model and then the survival fraction (SF), average lethal dose ($D_0$), quasi-threshold dose ($D_q$) and sensitive enhancement ratio (SER) were calculated. Cell apoptosis was analyzed by flow cytometry (FCM). Western blot assays were employed for expression of apoptosis-related proteins (Bc1-2 and Bax) after treatment with Piper longumine and/or X-ray radiation. The intracellular reactive oxygen species (ROS) level was detected by FCM with a DCFH-DA probe. Results: The cloning formation capacity was decreased in the group of piperlongumine plus radiation, which displayed the values of SF2, D0, Dq significantly lower than those of radiation alone group and the sensitive enhancement ratio (SER) of D0 was1.22 and 1.29, respectively. The cell apoptosis rate was increased by the combination treatment of Piper longumine and radiation. Piper longumine increased the radiation-induced intracellular levels of ROS. Compared with the control group and individual group, the combination group demonstrated significantly decreased expression of Bcl-2 with increased Bax. Conclusions: Piper longumine at a non-cytotoxic concentration can enhance the radio-sensitivity of MDA-MB-231cells, which may be related to its regulation of apoptosis-related protein expression and the increase of intracellular ROS level, thus increasing radiation-induced apoptosis.

α, γ-Mangostins Induce Autophagy and Show Synergistic Effect with Gemcitabine in Pancreatic Cancer Cell Lines

  • Kim, Myoungjae;Chin, Young-Won;Lee, Eun Joo
    • Biomolecules & Therapeutics
    • /
    • v.25 no.6
    • /
    • pp.609-617
    • /
    • 2017
  • Pancreatic cancer is one of the most lethal and aggressive cancers in the world. However, no effective treatment is currently available for pancreatic cancer. The objective of this study was to determine the anti-pancreatic cancer effect of ${\alpha}$-mangostin (${\alpha}M$) and ${\gamma}$-mangostin (${\gamma}M$) extracted from the pericarp of Garcinia mangostana L.. Both ${\alpha}$M and ${\gamma}M$ reduced the viability of pancreatic cancer cells MIA PaCa-2 and PANC-1 in a dose-dependent manner. These compounds induced apoptosis by increasing c-PARP and c-Caspase 3 levels. They also induced autophagy by increasing levels of microtubule-associated protein 1A/1B light chain 3B (LC3II) in both cell lines while decreasing sequestosome 1 (p62) in MIA PaCa-2. Both ${\alpha}$M and ${\gamma}M$ induced autophagy through increasing phosphorylation levels of AMP-activated protein kinase (p-AMPK) and p38-mitogen activated protein kinase (p-p38) while decreasing phosphorylation level of mammalian target of rapamycin complex 1 (p-mTOR). Of various microRNAs (miRNA), miR-18a was found to be a putative regulatory miRNA for autophagy induced by ${\alpha}$M or ${\gamma}M$. In combination with gemcitabine, a compound frequently used in pancreatic cancer treatment, ${\alpha}$M and ${\gamma}M$ showed synergistic anti-cancer effects in MIA PaCa-2. Collectively, these results suggest that ${\alpha}$M and ${\gamma}M$ can induce apoptosis and autophagy in pancreatic cancer cells and that their anti-cancer effect is likely to be associated with miR-18a. In conclusion, ${\alpha}$M and ${\gamma}M$ might be used as a potential new therapy for pancreatic cancer.

Glyceraldehyde-3-Phosphate Dehydrogenase, an Immunogenic Streptococcus equi ssp. zooepidemicus Adhesion Protein and Protective Antigen

  • Fu, Qiang;Wei, Zigong;Liu, Xiaohong;Xiao, Pingping;Lu, Zhaohui;Chen, Yaosheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.579-585
    • /
    • 2013
  • Streptococcus equi ssp. zooepidemicus (Streptococcus zooepidemicus, SEZ) is an important pathogen associated with opportunistic infections of a wide range of species, including pigs and humans. The absence of a suitable vaccine makes it difficult to control SEZ infection. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been previously identified as an immunogenic protein using immunoproteomic techniques. In the present study, we confirmed that the sequence of GAPDH was highly conserved with other Streptococcus spp. The purified recombinant GAPDH could elicit a significant humoral antibody response in mice and confer significant protection against challenge with a lethal dose of SEZ. GAPDH could adhere to the Hep-2 cells, confirmed by flow cytometry, and inhibit adherence of SEZ to Hep-2 cells in an adherence inhibition assay. In addition, real-time PCR demonstrated that GAPDH was induced in vivo following infection of mice with SEZ. These suggest that GAPDH could play an important role in the pathogenesis of SEZ infection and could be a target for vaccination against SEZ.

Synergistic Interactions of Schizostatin Identified from Schizophyllum commune with Demethylation Inhibitor Fungicides

  • Park, Min Young;Jeon, Byeong Jun;Kang, Ji Eun;Kim, Beom Seok
    • The Plant Pathology Journal
    • /
    • v.36 no.6
    • /
    • pp.579-590
    • /
    • 2020
  • Botrytis cinerea, which causes gray mold disease in more than 200 plant species, is an economically important pathogen that is mainly controlled by synthetic fungicides. Synergistic fungicide mixtures can help reduce fungicide residues in the environment and mitigate the development of fungicide-resistant strains. In this study, we screened microbial culture extracts on Botrytis cinerea to identify an antifungal synergist for tebuconazole. Among the 4,006 microbial extracts screened in this study, the culture extract from Schizophyllum commune displayed the most enhanced activity with a sub-lethal dosage of tebuconazole, and the active ingredient was identified as schizostatin. In combination with 5 ㎍/ml tebuconazole, schizostatin (1 ㎍/ml) showed disease control efficacy against gray mold on tomato leaf similar to that achieved with 20 ㎍/ml tebuconazole treatment alone. Interestingly, schizostatin showed demethylation inhibitor (DMI)-specific synergistic interactions in the crossed-paper strip assay using commercial fungicides. In a checkerboard assay with schizostatin and DMIs, the fractional inhibitory concentration values were 0.0938-0.375. To assess the molecular mechanisms underlying this synergism, the transcription levels of the ergosterol biosynthetic genes were observed in response to DMIs, schizostatin, and their mixtures. Treatment with DMIs increased the erg11 (the target gene of DMI fungicides) expression level 15.4-56.6-fold. However, treatment with a mixture of schizostatin and DMIs evidently reverted erg11 transcription levels to the pre-DMI treatment levels. These results show the potential of schizostatin as a natural antifungal synergist that can reduce the dose of DMIs applied in the field without compromising the disease control efficacy of the fungicides.

Acute Toxicity Study of the 2-butoxyethanol by Intratracheal Instillation in Male Sprague-Dawley Rats (수컷 랫드(Sprague-Dawley)에서 2-부톡시에탄올(2-butoxyethanol)의 단회 기도내 투여에 따른 급성 독성시험)

  • Kim, Hyeon-Young;Kim, In-Hyeon;Kim, Min-Seok;Kim, Sung-Hwan;Lee, Kyuhong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.31 no.4
    • /
    • pp.473-483
    • /
    • 2021
  • Objectives: The present study aimed to evaluate the potential toxicity of 2-butoxyethanol after intratracheal instillation in male rats. Methods: In order to calculate median lethal dose (LD50) of 2-butoxyethanol using Probit analysis with SAS program, the 2-butoxyethanol was administered with dose levels of 0, 101.64, 203.28 and 406.56 mg/kg by once intratracheal instillation to male rats. During the test period, clinical signs, mortality, body weights, organ weights, hematology, and serum biochemistry were examined. At the end of 14 days observation period, all animals were sacrificed and gross finding and histopathological examination were performed. Results: All animals of 406.56 mg/kg group died within 2 weeks after the administration of 2-butoxyethanol. Treatment-related clinical signs, gross observation and histopathological changes (mucous cell hyperplasia, alveolar macrophage aggregation, and hemorrhage) of lung exhibited an increased in 2-butoxyethanol treated groups in a dose dependent manner. However, there were no changes in the organ weights, hematology and serum biochemistry, and histopathology of any other organ except lung. Conclusions: On the basis of the results, it was concluded that a single intratracheal instillation of 2-butoxyethanol in male Sprague-Dawley rats resulted in some adverse effects on mortality, clinical sign, and histopathology in the lung. In the experimental conditions, the LD50 of 2-butoxyethanol was considered to be 287.2 mg/kg and lung was founded to be the target organ of 2-butoxyethanol.

The Attenuation Mechanism and Live Vaccine Potential of a Low-Virulence Edwardsiella ictaluri Strain Obtained by Rifampicin Passaging Culture

  • Shuyi Wang;Jingwen Hao;Jicheng Yang;Qianqian Zhang;Aihua Li
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.167-179
    • /
    • 2023
  • The rifampicin-resistant strain E9-302 of Edwardsiella ictaluri strain 669 (WT) was generated by continuous passage on BHI agar plates containing increasing concentrations of rifampicin. E9-302 was attenuated significantly by 119 times to zebrafish Danio rerio compared to WT in terms of the 50% lethal dose (LD50). Zebrafish vaccinated with E9-302 via intraperitoneal (IP) injection at a dose of 1 × 103 CFU/fish had relative percentage survival (RPS) rates of 85.7% when challenged with wild-type E. ictaluri via IP 14 days post-vaccination (dpv). After 14 days of primary vaccination with E9-302 via immersion (IM) at a dose of 4 × 107 CFU/ml, a booster IM vaccination with E9-302 at a dose of 2 × 107 CFU/ml exhibited 65.2% RPS against challenge with wild-type E. ictaluri via IP 7 days later. These results indicated that the rifampicin-resistant attenuated strain E9-302 had potential as a live vaccine against E. ictaluri infection. A previously unreported amino acid site change at position 142 of the RNA polymerase (RNAP) β subunit encoded by the gene rpoB associated with rifampicin resistance was identified. Analysis of the whole-genome sequencing results revealed multiple missense mutations in the virulence-related genes esrB and sspH2 in E9-302 compared with WT, and a 189 bp mismatch in one gene, whose coding product was highly homologous to glycosyltransferase family 39 protein. This study preliminarily explored the molecular mechanism underlying the virulence attenuation of rifampicin-resistant strain E9-302 and provided a new target for the subsequent study of the pathogenic mechanism of E. ictaluri.

Fatty Acid Binding Protein 5 (FABP5) Promotes Aggressiveness of Gastric Cancer Through Modulation of Tumor Immunity

  • Mei-qing Qiu;Hui-jun Wang;Ya-fei Ju;Li Sun;Zhen Liu;Tao Wang;Shi-feng Kan;Zhen Yang;Ya-yun Cui;You-qiang Ke;Hong-min He;Shu Zhang
    • Journal of Gastric Cancer
    • /
    • v.23 no.2
    • /
    • pp.340-354
    • /
    • 2023
  • Purpose: Gastric cancer (GC) is the second most lethal cancer globally and is associated with poor prognosis. Fatty acid-binding proteins (FABPs) can regulate biological properties of carcinoma cells. FABP5 is overexpressed in many types of cancers; however, the role and mechanisms of action of FABP5 in GC remain unclear. In this study, we aimed to evaluate the clinical and biological functions of FABP5 in GC. Materials and Methods: We assessed FABP5 expression using immunohistochemical analysis in 79 patients with GC and evaluated its biological functions following in vitro and in vivo ectopic expression. FABP5 targets relevant to GC progression were determined using RNA sequencing (RNA-seq). Results: Elevated FABP5 expression was closely associated with poor outcomes, and ectopic expression of FABP5 promoted proliferation, invasion, migration, and carcinogenicity of GC cells, thus suggesting its potential tumor-promoting role in GC. Additionally, RNA-seq analysis indicated that FABP5 activates immune-related pathways, including cytokine-cytokine receptor interaction pathways, interleukin-17 signaling, and tumor necrosis factor signaling, suggesting an important rationale for the possible development of therapies that combine FABP5-targeted drugs with immunotherapeutics. Conclusions: These findings highlight the biological mechanisms and clinical implications of FABP5 in GC and suggest its potential as an adverse prognostic factor and/or therapeutic target.

Effects of Temperature and Nematode Concentration on Pathogenicity and Reproduction of Entomopathogenic Nematode, Steinernema carpocapsae Pocheon Strain (Nematoda: Steinernematidae) (온도 및 농도가 곤충병원성 선충, Steinernema carpocapsae 포천 계통 (Nematoda: Steinernematidae)의 병원성과 증식에 미치는 영향)

  • 추호렬;이동운;윤희숙;이상명;항다오싸이
    • Korean journal of applied entomology
    • /
    • v.41 no.4
    • /
    • pp.269-277
    • /
    • 2002
  • Ecological studies on entomopathogenic nematodes are required to increase control efficacy against target insect pests and to obtain basic information for mass production. Thus, effect of temperature and nematode concentration on infectivity and reproduction of Steinernema carpocapsae Pocheon and that of exposure time and soil depth on infectivity were examined using Galleria mellonella larvae. Infectivity and reproduction were examined at five temperatures, 13, 18, 24, 30 and 35$^{\circ}C$ with seven concentrations, 0, 5, 10, 20, 40, 80 and 160 infective juveniles (IJs)/larva. Temperature and nematode concentration influenced infectivity and reproduction of S. carpocapsae Pocheon. Although G. mellonella larvae were killed by S. carpocapsae Pocheon at all given temperatures and nematode concentrations, mortality was higher at 24$^{\circ}C$ than other temperatures. Lethal time of G. mellonella by S. carpocapsae Pocheon was shorter with increasing temperature and nematode concentrations. S. carpocapsae Pocheon was not established in G. mellonella at 13 and $35^{\circ}C$. Time for the first emergence from G. mellonella cadaver was longer $18^{\circ}C$ (about 20 days) than 24 and $30^{\circ}C$ (about 5 days). The highest number of progenies was obtained at $24^{\circ}C$ with 80IJs/1arva, i.e., $18.8$\times$10^4$IJs were produced from a larva. In the exposure time assay, G. mellonella death was recorded in 10 minutes when 300 IJs were inoculated per larva. When S. carpocapsae Pocheon was inoculated at the rate of $10^{9}$ IJs/ha to G. mellonella at the depth of 0, 2, 5 and 10 cm of sand columns, 100% mortality and similar sex ratio were observed but number of established IJs in cadaver was decreased with deepening the soil depth. The results indicated that optimum temperature for infectivity and reproduction of S. carpocapsae Pocheon was $24^{\circ}C$ In addition, S. carpocapsae Pocheon was effective to target insects within 5 cm from the soil surface.

Enhanced Pathogenicity of Baculovirus Using Immunosuppressive Genes Derived From Cotesia plutellae Bracovirus (폴리드나바이러스(CpBV) 유래 면역억제 유전자를 이용한 베큘로바이러스 병원력 제고 기술)

  • Kim, Yong-Gyun;Kwon, Bo-Won;Bae, Sung-Woo;Choi, Jai-Young;Je, Yeon-Ho
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.3
    • /
    • pp.283-290
    • /
    • 2008
  • Baculoviruses have been used to control some serious lepidopteran pests. However, their narrow target insect spectrum and slow efficacy are main limitations to be used in various applications. This study introduces a technique to overcome these limitations by inhibiting insect immune defence to enhance the viral pathogenicity. Polydnaviruses are an insect DNA virus group and symbiotic to some ichneumonid and braconid endoparasitoids. Cotesia plutellae bracovirus (CpBV) is a braconid polydnavirus and encodes several immunosuppressive genes. We selected seven CpBV genes and recombined them to wild type Autographa California multiple nucleopolyhedrovirus (AcNPV). A bioassay of these seven recombinants indicated that most recombinants had similar or superior efficacy to wild type AcNPV against beet armyworm, Spodoptera exigua, and diamondback moth, Plutella xylostella. Recombinant AcNPV with CpBV-ELP was the most potent in terms of lethal time by shortening more than 2 days compared to wild type AcNPV. This recombinant was further proved in its dose-dependent pathogenicity and its efficacy by spray application on S. exigua infesting cabbage cultivated in pots. We discussed the efficacy of CpBV-ELP recombinant AcNPV in terms of suppressing antiviral activity of target insects.

In vivo multiplex gene targeting with Streptococcus pyogens and Campylobacter jejuni Cas9 for pancreatic cancer modeling in wild-type animal

  • Chang, Yoo Jin;Bae, Jihyeon;Zhao, Yang;Lee, Geonseong;Han, Jeongpil;Lee, Yoon Hoo;Koo, Ok Jae;Seo, Sunmin;Choi, Yang-Kyu;Yeom, Su Cheong
    • Journal of Veterinary Science
    • /
    • v.21 no.2
    • /
    • pp.26.1-26.14
    • /
    • 2020
  • Pancreatic ductal adenocarcinoma is a lethal cancer type that is associated with multiple gene mutations in somatic cells. Genetically engineered mouse is hardly applicable for developing a pancreatic cancer model, and the xenograft model poses a limitation in the reflection of early stage pancreatic cancer. Thus, in vivo somatic cell gene engineering with clustered regularly interspaced short palindromic repeats is drawing increasing attention for generating an animal model of pancreatic cancer. In this study, we selected Kras, Trp53, Ink4a, Smad4, and Brca2 as target genes, and applied Campylobacter jejuni Cas9 (CjCas9) and Streptococcus pyogens Cas9 (SpCas9) for developing pancreatic cancer using adeno associated virus (AAV) transduction. After confirming multifocal and diffuse transduction of AAV2, we generated SpCas9 overexpression mice, which exhibited high double-strand DNA breakage (DSB) in target genes and pancreatic intraepithelial neoplasia (PanIN) lesions with two AAV transductions; however, wild-type (WT) mice with three AAV transductions did not develop PanIN. Furthermore, small-sized Cjcas9 was applied to WT mice with two AAV system, which, in addition, developed high extensive DSB and PanIN lesions. Histological changes and expression of cancer markers such as Ki67, cytokeratin, Mucin5a, alpha smooth muscle actin in duct and islet cells were observed. In addition, the study revealed several findings such as 1) multiple DSB potential of AAV-CjCas9, 2) peri-ductal lymphocyte infiltration, 3) multi-focal cancer marker expression, and 4) requirement of > 12 months for initiation of PanIN in AAV mediated targeting. In this study, we present a useful tool for in vivo cancer modeling that would be applicable for other disease models as well.