• Title/Summary/Keyword: lens system

Search Result 1,361, Processing Time 0.026 seconds

Performance Evaluation and Design of Zoom Lens Systems (Zoom Lens계의 성능 평가 및 설계)

  • Ji, Taek Sang
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.2
    • /
    • pp.113-121
    • /
    • 2002
  • Nowadays, developed camera, camcorder, CCTV and copier system accept a wide angle and a telephoto lens, and have an excellent capacity. Also, it is small as using aspheric surface. In this paper, after we evaluate and analyze two-group zoom lens system and three-group zoom lens system for camera, we refer to it, and design three-group zoom lens system for camera. Therefore, when we design a zoom lens system for camera, we use a symmetrical system. As using an aspheric surface, we can try to a miniaturization and an efficient improvement. We use optical valuable measure methods, a ray intercept plot, MTF and Seidel coefficient. So, we can confirm to have a similar level to compare with reference model.

  • PDF

A Study on Key Parameters and Characteristics in the Manufacturing Process of the Dual Pickup Objective Lens (Dual Pickup 대물렌즈의 생산을 위한 주요 Parameter 및 특성에 관한 연구)

  • Woo, Sun-Hee;Lee, Dong-Ju
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.117-124
    • /
    • 2007
  • In order to operate CD and DVD compatibly in a pickup system, the objective lens comprise diffractive optical element(DOE) zone and aspheric curvature on its lens surface. The DOE objective lens is effective to simplify this dual-purpose pickup system of the 655nm and 785nm wavelength by using only one lens, but requires more precision manufacturing process and system due to the complicated shape. This paper presents the overall manufacturing process of this objective lens and describes main parameters in each process, for the correction of the aspheric surface in its core, the shrinkage compensation after injection molding, and the uniformity compensation by adjusting molding conditions.

Evaluation on the Optimum Grinding of Aspheric Surface Micro Lens for Camera Phone (휴대폰 카메라용 비구면 마이크로 렌즈 최적 연삭가공 평가)

  • Baek Seung-Yub;Lee Eun-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.1-9
    • /
    • 2006
  • As consumers in optics, electronics, aerospace and electronics industry grow, the demand for ultra-precision aspheric surface lens increases higher. To enhance the precision and productivity of ultra precision aspheric surface micro lens, the development of ultra-precision grinding system and process for the aspheric surface micro lens are described. In the work reported in this paper, an ultra-precision grinding system for manufacturing the aspheric surface micro lens was developed by considering the factors affecting the ground surface roughness and profile accuracy. This paper deals with mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and spherical lens of BK7. The optimization of grinding conditions on ground surface roughness and profiles accuracy is investigated using the design of experiments.

Unveiling the Properties of FLS 1718+59: A Galaxy-Galaxy Gravitational Lens System

  • Taak, Yoon Chan;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.36.2-36.2
    • /
    • 2014
  • We present results of the analysis of FLS 1718+59, a galaxy-galaxy gravitational lens system in the Spitzer First Look Survey (FLS) Field. A background galaxy (z = 0.245) is severely distorted by an elliptical galaxy (z = 0.08), by gravitational lensing. We analyze this system by several methods, including Ellipse and Galfit fitting, gravitational lens modeling (gravlens), and SED fitting. Properties of the lens galaxy can be obtained: from Galfit we measure the effective radius and the average surface brightness inside it, and from gravlens we estimate the total mass inside the Einstein radius (lensing mass). We use these parameters to check that the lens galaxy is located on the Fundamental Plane. Also, we conduct SED fitting for the lens galaxy and estimate the stellar mass, and compare this with the lensing mass of the lens galaxy to check the M-L relation.

  • PDF

Aberration analysis of telephoto lens system by using thin lens approximation (얇은 렌즈 근사를 이용한 Telephoto Lens계의 수차해석)

  • 문준석;이종웅;박성찬
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.4
    • /
    • pp.275-282
    • /
    • 2002
  • We derived analytic formulae for the correction of spherical aberration, coma, and axial color of a two-components lens system consisted of a cemented doublet and a singlet by using the thin lens approximation. The correction formulae were applied to design a telephoto lens system. We examined two kinds of glass combinations in the design, one was crown-flint-crown combination and the other was flint-crown-flint combination. We found two kinds of achromatic aplanat solutions in the crown-flint-crown combination. For the case of flint-crown-flint combination, there were also two kinds of solutions, but their configurations are not useful in practice.

A study on the development of ultra-precision grinding system and manufacturing properties for aspheric surface micro lens (비구면 마이크로 렌즈 가공을 위한 초정밀 연삭 시스템 개발 및 가공 특성에 관한 연구)

  • Baek S.Y.;Lee H.D.;Kim S.H.;Lee E.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.15-18
    • /
    • 2005
  • As consumer in optics, electronics, aerospace and electronics industry grow, the demand for ultra-precision aspheric surface lens increases higher. To enhance the precision and productivity of ultra precision aspheric surface micro lens, The development of ultra-precision grinding system and manufacturing properties for the aspheric surface micro lens are described. In the work reported in this paper, and ultra-precision grinding system for manufacturing the aspheric surface micro lens was developed by considering the factors affecting the surface roughness and profiles accuracy. And this paper deals with mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and spherical lens of BK7. It results was that a form accuracy of $3\;{\mu}m$ P-V and a surface roughness of $0.1\;{\mu}m\;R_{max}$.

  • PDF

Design and Analysis of an Objective Lens for a Scanning Electron Microscope by Coupling FE Analysis and Ray Tracing (유한요소해석과 광선추적을 연계한 주사전자 현미경 대물렌즈의 설계 및 해석)

  • Park, Keun;Lee, Jae-Jin;Park, Man-Jin;Kim, Dong-Hwan;Jang, Dong-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.92-98
    • /
    • 2009
  • The scanning electron microscope (SEM) contains an electron optical system in which electrons are emitted and moved to form a focused beam, and generates secondary electrons from the specimen surfaces, eventually making an image. The electron optical system usually contains two condenser lenses and an objective lens. The condenser lenses generate a magnetic field that forces the electron beams to form crossovers at desired locations. The objective lens then focuses the electron beams on the specimen. The present study covers the design and analysis of an objective lens for a thermionic SEM. A finite element (FE) analysis for the objective lens is performed to analyze its magnetic characteristics for various lens designs. Relevant beam trajectories are also investigated by tracing the ray path of the electron beams under the magnetic fields inside the objective lens.

Zoom lens design for compact digital camera using lens modules (렌즈모듈을 이용한 컴팩트 디지털 카메라용 줌 렌즈 설계)

  • Park, Sung-Chan;Lee, Sang-Hun
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.1
    • /
    • pp.34-42
    • /
    • 2005
  • This paper presents the optimum initial design containing the first and third order properties of the three-group zoom system using lens modules, and the real lens design of the system. The optimum initial design with focal length range of 4.3 mm to 8.6 mm is derived by assigning appropriate first and third order quantities to each module along with the specific constraints required for the system. An initial real lens selected for each group has been designed to match its focal length and the first orders into those of the each lens modules, and then combined to establish an actual zoom system by adjusting the air space between the groups at all zoom positions. The combination of the separately designed groups results in a system which satisfies the first order properties of the zoom system composed of the original lens modules. As a result, by residual aberration correction, we could obtain a zoom system useful in compact digital zoom cameras and mobile phone cameras employing the rear focus method.

Estimation of the Performance of Optical Collimators Manufactured by Automatic Micro Joining-Assembly System (자동 접속조립시스템에 의한 광콜리메이터 성능평가)

  • Choe, Du-Seon;Je, Tae-Jin;Mun, Jae-Ho
    • 연구논문집
    • /
    • s.32
    • /
    • pp.23-34
    • /
    • 2002
  • Up to now, collimators have teen generally produced by handwork and only a few companies have produced by semi-automatic system. Under this situation, automatic system for assembly of optical collimators has risen as a mast essential technique in the development of optical communication components. In this study, it was constructed to develop optical collimators with high functionality and we manufactured optical collimators with a GRIN rod lens and spherical lens using automatic system. Therefore, we worked a performance test through a comparison of collimators made by automatic system and handwork with angle augment, bean size. Also we selected a optimum assembly condition of GRIN rod lens and spherical lens. As a result, it brought a reduction of the tact time and an improvement of an efficiency and a productivity of optical collimators, therefore it was found that automatic system was indispensable for materialization of optical collimators with high functionality.

  • PDF

Study on Accuracy Evaluation of Laser Lens Changer for a Laser-Assisted Machining System (레이저보조가공에서 레이저 렌즈 교환장치의 정밀도 평가에 관한 연구)

  • Oh, Won-Jung;Kim, Eun-Joong;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.8
    • /
    • pp.687-692
    • /
    • 2015
  • LAM (Laser-Assisted Machining) is an effective method for processing difficult-to-cut workpieces. The focal length of a LAM system is changed by the change of the workpiece shape during laser preheating; this problem is solved by changing the lens of the laser module. Linear- and rotary-type lens changers were developed to change the laser lens of a LAM system. The linear-type lens changer is operated by a motor with a ball-screw, and the rotary type is operated by a stepping motor. The natural frequency and structural stability of the laser lens changers were confirmed by using a finite element analysis; in addition, the functions of the lens changers were verified by measuring the iterative accuracy. The measured results show that the rotary-type lens changer is more accurate than the linear-type changer.