• 제목/요약/키워드: lens mold

검색결과 190건 처리시간 0.024초

카메라 렌즈 표면에 형성된 미세 패턴의 내구성 향상 기법 제안 (Proposed Approaches on Durability Enhancement of Small Structure fabricated on Camera Lens Surface)

  • 박홍주;최인범;김두인;정명영
    • 한국산업융합학회 논문집
    • /
    • 제22권5호
    • /
    • pp.467-473
    • /
    • 2019
  • In this study, approached to improve durability of the multi-functional nano-pattern fabricated on the curved lens surface using nanoimprint lithography (NIL) was proposed, and the effects of the proposed methods on functionality after wear test were examined. To improve the mechanical property of ultraviolet(UV)-curable resin, UV-NIL was conducted at the elevated temperature around $60^{\circ}C$. In addition, micro/nano hierarchical structures was fabricated on the lens surface with a durable film mold. Analysis on the worn surfaces of nano-hole pattern and hierarchical structures and measurements on the static water contact angle and critical water volume for roll-off indicated that the UV curing process with elevated temperature is effective to maintain wettability by increasing hardness of resin. Also, it was found that the micro-scale pattern is effective to protect nano-pattern from damage during wear test.

Analysis of Physical Properties of Hydrogel Lenses Polymer Containing Styrene and PVP

  • Lee, Min-Jae;Sung, A-Young
    • 한국재료학회지
    • /
    • 제29권7호
    • /
    • pp.399-407
    • /
    • 2019
  • This research is carried out to analyze the effects of Styrene and PVP on the properties of silicone hydrogel lenses. Styrene group and PVP(Polyvinylpyrrolidone) are used as additives for a basic combination containing silicone monomer, TSMA(trimethylsilyl methacrylate) and DMA(n,n-dimethylacrylamide) added to the mix at ratios of 1~10 %. Silicone hydrogel lens is produced by cast-mold method. The polymerized lens sample is hydrated in a 0.9 % saline solution for 24 hours before its optical and physical characteristics are measured. Measurement of the physical characteristics of the produced material shows that the refractive index is 1.3682~1.4321, water content 77.11~45.73 %, visible light transmittance 95.14~88.20 %, and tensile strength 0.0652~0.3113 kgf. The results show a decrease of refractive index as the ratio of additives and water content decreases. The result of the stabilization test of polymerization show an increase of extractables along with increase of the ratio of additives, but the difference is not significant for all samples, so it can be judged that the stabilization of the polymer is maintained. Therefore, the additions of styrene and PVP should be taken into consideration for their effects on the physical properties of silicone hydrogel lens.

자동차용 헤드램프의 플라스틱 소재 Haze 저감 방법에 관한 연구 (A study on method for reducing haze defects of head lamp for automobiles)

  • 이승욱;이춘규
    • Design & Manufacturing
    • /
    • 제15권4호
    • /
    • pp.32-36
    • /
    • 2021
  • In this study, the cause of the decrease in transmittance of the outer lens among the causes of the decrease in the amount of light in the automobile headlamp was identified, and the improvement method was selected to determine the effect. The causes of defects that lower the transmittance of the outer lens are divided into a moisture problem and a haze problem. The moisture problem is caused by the temperature difference between the inside and the outside of the head lamp, and the haze problem occurs when the heat inside the head lamp evaporates the haze component contained in the plastic material and attaches it to the outer lens. In order to improve the haze problem that occurs in plastic raw materials, the structures of the bulb light source type headlamp and the LED chip light source type headlamp were analyzed. Among them, the housing material of the LED chip light source type headlamp, which is structurally prone to haze gas, was selected as the test target. In the mass-production injection process of the housing, the drying process was selected as a method to minimize haze gas without adding a separate production process. After extracting a sample every drying time at a constant drying temperature, the sample was put into a haze tester and the residual amount of haze gas was measured. As a result, it was confirmed that the residual amount of Haze gas in the material decreased as the drying time increased.

Glassy Carbon의 초정밀 가공 (Ultraprecision Machining of Glassy Carbon)

  • 황연;이현성;김혜정;김정호
    • 한국기계가공학회지
    • /
    • 제11권3호
    • /
    • pp.19-23
    • /
    • 2012
  • Glassy carbon is widely used for high temperature melting process such as quartz due to its thermal stability. For utilizing Classy Carbon to glass mold press(GMP) optical lens, brittleness of Glassy Carbon is main obstacle of ultraprecision machining. Thus authors investigated ductile machining of Glassy Carbon adopting turning and grinding process respectively. From the experiments, ultraprecision turning surfaces resulted brittle crack in all machining conditions and ultraprecision grinding surfaces showed semi-ductile mode in small undeformed chip thickness conditions.

타원궤적 진동절삭법을 이용한 미세 면선삭 (Micro Turning on Face using Elliptical Vibration Cutting)

  • 김기대;노병국
    • 한국정밀공학회지
    • /
    • 제26권1호
    • /
    • pp.82-88
    • /
    • 2009
  • Ultra-precision turning is highly needed to manufacture molds for precision lens. In this study, micro-turning combined with elliptical vibration cutting (EVC), which is known to enhance micro- machining quality, was investigated by installing a rotary stage into the micro-grooving machine. From machining experiments involving materials of copper, brass, and aluminum and single and poly crystalline diamond tools, it was found that EVC produced thinner and curlier chips and that better surface finish could be achieved, compared with conventional turning, owing to prohibition of formation of burrs and built-up edges. Therefore, we found EVC micro turning could be readily utilized to manufacture precision mold.

기능성 초정밀 핵심 요소부품 제조 초정밀 금형 기반기술 개발 (Development of fundamental technologies on high precision mold for micro functional elements and parts)

  • 제태진;이응숙;최두선;김재구;황경현;윤재성;장성환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.74-77
    • /
    • 2009
  • Demands for high quality and productivity of precision mechanical parts are increasing greatly nowadays due to the rapid growth of information technologies and convergence industries. Therefore, core technologies for fabrication of precision mechanical parts are the fundamental issues, which are the precision machining, micro powder injection molding technologies, MR polishing, micro polymer processes, micro actuation modules and so on. These technologies are directly related to the mass production of high functional devices and machineries. Therefore, this study investigates the fabrication technologies of micro precision molds for advanced devices for possible commercialization in a near future.

  • PDF

카메라폰 모듈용 비구면 Glass렌즈의 성형 및 광학특성 평가 (Molding and Optical Evaluation of Aspheric Glass Lenses for Camera Phone Module)

  • 김혜정;차두환;김정호
    • 한국산업정보학회논문지
    • /
    • 제12권3호
    • /
    • pp.124-131
    • /
    • 2007
  • 3 Megapixel, 2.5배 Zoom 카메라폰 모듈용 광학계 중 비구면과 평면으로 설계된 평볼록형 비구면 Glass렌즈를 고온압축성형법으로 제작하였다. 제작된 비구면 Glass 성형렌즈의 성능은 성형렌즈의 형상정도(PV) 전사성과 해상도로 평가하였다. Glass렌즈 성형용 몰드의 형상정도(PV)는 비구면의 경우 $0.127\;{\mu}m$, 평면의 경우 $0.168\;{\mu}m$이었고, 성형된 렌즈의 형상정도(PV)는 비구면의 경우 $0.205\;{\mu}m$, 평면의 경우 $0.223\;{\mu}m$90{\sim}95%$의 전사정도를 보였다. 성형렌즈의 해상도 평가를 위해 렌즈의 MTF[Contrast]를 측정하였다. 공간주파수 80 lp/mm에서 Contrast가 32.9%을 보였으며, 이 값은 렌즈 광학설계의 전산모사에서 얻어진 Contrast 33%에 근사한 값으로 성형렌즈의 해상도 특성이 우수함을 알 수 있었다.

  • PDF

Transcription Mechanism of Minute Surface Pattern in Injection Molding

  • YASUHARA Toshiyuki;KATO Kazunori;IMAMURA Hiroshi;OHTAKE Naoto
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 The Korea-Japan Plastics Processing Joint Seminar
    • /
    • pp.1-6
    • /
    • 2003
  • In injection molding of an optical disk, a toric lens, etc., their performance depends on the transcription preciseness of fine surface structure of a mold. However, transcription behavior has not been made clear yet, because transcription is made in very short time and the structure is very small. In this paper, transcription properties have been examined, by using V-grooves of various sizes. machined on mold surfaces, and the following results are obtained. (1) Transcription properties have been made clear experimentally and it was found that the mold temperature $T_D$ makes great influence on the transcription property and that compression applying time $t_c$ should be taken more than 2.0s for fine transcription. (2) A mechanical model of transcription process, in consideration with strain recovery due to viscoelastic property of polymer. is proposed. (3) Simulation results agree with experimental ones fairly well. It means that the transcription model is useful for estimation of transcription property in advance of an actual. injection molding.

  • PDF

콘택트렌즈의 물리화학적 특성에 따른 라이소자임과 알부민의 흡착 특성 (Adsorption Properties of the Lysozyme and Albumin with Physicochemical Properties of the Contact Lens)

  • 성유진;유근창;전진
    • 한국안광학회지
    • /
    • 제18권3호
    • /
    • pp.261-270
    • /
    • 2013
  • 목적: FDA 기준에 의해 분류된 시판용 콘택트렌즈와 실험실에서 제조한 콘택트렌즈의 물리화학적 특성에 따라 라이소자임과 알부민의 흡착 특성을 살펴보고자 한다. 방법: 실험실에서 제조한 렌즈는 HEMA(2-hydroxyethyl methacrylate)와 TRIM(3-(trimethoxysilyl) propyl methacrylate) 등의 모노머를 사용하였으며 캐스트몰드 방법으로 제조하였다. 라이소자임과 알부민을 함유한 인공눈물을 제조하였다. 각각의 렌즈에 대해 흡착시간(48시간)과 인공눈물의 pH(pH 6, 6.8, 7.4, 8.2, 9)에 따라 단백질 흡착량 변화를 추적하고, 콘택트렌즈에 흡착된 각각의 단백질은 HPLC로 정량하였다. 결과: 두 단백질의 흡착에 대한 평형상태 도달하는 시간은 하이드로겔 렌즈에 비해 실리콘하이드로겔 렌즈에서 더 오래 걸렸다. 평형상태에서 두 단백질에 대한 흡착량은 실리콘하이드로겔 렌즈에 비해 하이드로겔 렌즈, 비이온성 렌즈에 비해 이온성 렌즈에서 높게 나타났다. 또한, 고함수 렌즈에서는 라이소자임이, 저함수 렌즈에서는 알부민의 흡착량이 많았으며, 이온성 고함수의 Group IV 하이드로겔 렌즈(H4)에서는 라이소자임만이 흡착되었다. 인공눈물의 pH에 따른 두 단백질의 흡착량은 각 단백질의 등전점에 가까워질수록 증가하였다. 결론: 라이소자임의 흡착량은 콘택트렌즈의 함수율보다는 렌즈 표면의 이온성에 더 큰 영향을 받으며, 알부민은 렌즈 표면의 이온성보다 함수율에 더 많은 영향을 받는다. 실리콘하이드로겔 렌즈에서 단백질의 흡착은 콘택트렌즈의 극성뿐만 아니라 실리콘 모노머에 포함된 Si 원자수와 그 화학적 구조에 의해 결정되는 세공의 크기 등이 함께 고려되어야 한다.