• Title/Summary/Keyword: length-width ratio

Search Result 894, Processing Time 0.044 seconds

Fabrication of Thin Film Transistor Using Ferroelectrics

  • Hur, Chang-Wu;Kim, Jung-Tae
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.2
    • /
    • pp.93-96
    • /
    • 2004
  • The a-Si:H TFT using ferroelectric of $SrTiO_3$ as a gate insulator is fabricated on glass. Dielectric characteristics of ferroelectric are superior to $SiO_2$ and $Si_{3}N_{4}$. Ferroelectric increases on-current, decreases threshold voltage of TFT and also improves breakdown characteristics. The a-SiN:H has optical band gap of 2.61 eV, retractive index of 1.8∼2.0 and resistivity of $10^{13}$~$10^{15}$ $\Omega$cm, respectively. Insulating characteristics of ferroelectrics are excellent because dielectric constant of ferroelectric is about 60∼100 and breakdown strength is over 1MV/cm. TFT using ferroelectric has channel length of 8∼20 $\mu\textrm{m}$ and channel width of 80∼200 $\mu\textrm{m}$. And it shows that drain current is 3.4$\mu\textrm{A}$ at 20 gate voltage, $I_{on}$/$I_{off}$ is a ratio of $10^5$~$10^8$ and $V_{th}$ is 4∼5 volts, respectively. In the case of TFT without ferroelectric, it indicates that the drain current is 1.5 $\mu\textrm{A}$ at 20 gate voltage and $V_{th}$ is 5∼6 volts. With the improvement of the ferroelectric thin film properties, the performance of TFT using this ferroelectric has advanced as a gate insulator fabrication technology is realized.

Growth and Chemical Properties of Oriental Tobacco as affected by Transplanting Time (오리엔트종 연초의 생육 및 화학특성에 미치는 이식시기의 영향)

  • Ryu, Myong-Hyun;Jung, Hyung-Jin;Lee, Un-Chul
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.10 no.2
    • /
    • pp.109-116
    • /
    • 1988
  • Oriental tobacco (KA 101) was transplanted from Mar. 25 to May 5 with 10 days interval in 1984 and 1985, and its agronomic characteristics, chemical properties ware compared to determine the Proper transplanting time of aromatic tobacco In Korea. As the transplanting was delayed, days to flowering of plant was shortened, length and width of largest leaf, leaf area index tended to decrease. Yield was highest for the Apr. 5th transplanting followed by Mar. 25th planting, then decreased as the planting date was delayed. Quality by price decreased as the transplanting was delayed later than Apr. 25. Delaying transplanting increased nicotine, total nitrogen and ash content, but decreased reducing sugar and petroleum ether extract of cured leaves, The content of volatile organic acids such as 3-methyl pentanoic acid was lower when it was transplanted later than Apr. 25th. Neophytadiene content increased as the transplanting was delayed, but there were no trends with the content of alcohols, aldehydes esters and ketones. Several quality indices including the ratio between the content of volatile organic acids plus petroleum ether extract and ash content plus pH was higher for the Apr. 5th transplanting.

  • PDF

Effects of the Hard-Biased Field on the Magnetic and Magnetoresistive Properties of a Crossed Spin-Valve Bead by Computer Simulation

  • S. H. Lim;K. H. Shin;Kim, K. Y.;S. H. Han;Kim, H. J.
    • Journal of Magnetics
    • /
    • v.5 no.1
    • /
    • pp.19-22
    • /
    • 2000
  • The effects of a hard-biased Held on the magnetic and magnetoresistive properties of a crossed spin-valve head are investigated by computer simulation with particular emphasis on the asymmetry of the output signal. The spin-valve considered in this work is NiMn (25 nm)/NiFe (2.5 m)/Cu (3 nm)/NiFe (5.5 m), with a length of 1500 m and a width of 600 nm. A simple model is used where each magnetic layer consists of a single domain, and the magnetoresistance is a function of the angle between the magnetization directions of the two magnetic layers. The ideal crossed spin-valve structure is not realized with the present model and magnetic parameters, but the deviation from ideality is decreased by the hard-biased field. This results in the improvement of the linearity of the output signal with the use of the bias field. The magnetoresistance ratio and magnetoresistive sensitivity, however are reduced. The magnetic properties including the magnetoresistance are found to be strongly affected by magnetostatic interactions, particularly the inter-layer magnetostatic field.

  • PDF

Novel Fungal Species Belonging to the Genus Acaulium Isolated from Riptortus clavatus (Heteroptera: Alydidae) in Korea

  • Lee, Ju-Heon;Ten, Leonid N.;Lee, Seung-Yeol;Jung, Hee-Young
    • The Korean Journal of Mycology
    • /
    • v.49 no.4
    • /
    • pp.477-486
    • /
    • 2021
  • A survey of insect-associated fungi in Korea revealed a novel fungal strain isolated from the bean bug Riptortus clavatus (Heteroptera: Alydidae). Culturally and morphologically, the fungal strain designated KNUF-20-INY03, shares features with members of the genus Acaulium. Phylogenetic analyses based on the concatenated nucleotide sequences of the internal transcribed spacer regions (ITS) regions and partial sequences of the translation elongation factor 1-alpha (TEF1-α), and β-tubulin (β-TUB), and large subunit of the nuclear ribosomal RNA (LSU) genes showed that the isolate is part of a clade that includes other Acaulium species, but it occupies a distinct phylogenetic position. Based on the shape, size, and color of its conidia and conidiogenous cells, strain KNUF-20-INY03 is readily distinguishable from the closely related A. acremonium, A. albonigrescens, A. caviariformis, A. pannemaniae, and A. retardatum. The conidial length-to-width ratio (1.6) of the novel isolate is significantly lower than that of A. acremonium (1.9), A. albonigrescens (2.4), and A. pannemaniae (2.4), and KNUF-20-INY03 produces hyaline conidia and elliptical conidiogenous cells while A. caviariformis forms brown conidia and A. retardatum produces flask-shaped conidiogenous cells. Thus, both phylogenetic and morphological analyses indicate that this strain is a novel species in the genus Acaulium, and we propose the name Acaulium microspora sp. nov.

Stochastic Strong Ground Motion Simulation at South Korean Metropolises' Seismic Stations Based on the 2016 Gyeongju Earthquake Causative Fault (2016년 경주지진 원인단층의 시나리오 지진에 의한 국내 광역도시 지진관측소에서의 추계학적 강진동 모사)

  • Choi, Hoseon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.233-240
    • /
    • 2021
  • The stochastic method is applied to simulate strong ground motions at seismic stations of seven metropolises in South Korea, creating an earthquake scenario based on the causative fault of the 2016 Gyeongju earthquake. Input parameters are established according to what has been revealed so far for the causative fault of the Gyeongju earthquake, while the ratio of differences in response spectra between observed and simulated strong ground motions is assumed to be an adjustment factor. The calculations confirm the applicability and reproducibility of strong ground motion simulations based on the relatively small bias in response spectra between observed and simulated strong ground motions. Based on this result, strong ground motions by a scenario earthquake on the causative fault of the Gyeongju earthquake with moment magnitude 6.5 are simulated, assuming that the ratios of its fault length to width are 2:1, 3:1, and 4:1. The results are similar to those of the empirical Green's function method. Although actual site response factors of seismic stations should be supplemented later, the simulated strong ground motions can be used as input data for developing ground motion prediction equations and input data for calculating the design response spectra of major facilities in South Korea.

Analytical behavior of built-up square concrete-filled steel tubular columns under combined preload and axial compression

  • Wang, Jian-Tao;Wang, Fa-Cheng
    • Steel and Composite Structures
    • /
    • v.38 no.6
    • /
    • pp.617-635
    • /
    • 2021
  • This paper numerically investigated the behavior of built-up square concrete-filled steel tubular (CFST) columns under combined preload and axial compression. The finite element (FE) models of target columns were verified in terms of failure mode, axial load-deformation curve and ultimate strength. A full-range analysis on the axial load-deformation response as well as the interaction behavior was conducted to reveal the composite mechanism. The parametric study was performed to investigate the influences of material strengths and geometric sizes. Subsequently, influence of construction preload on the full-range behavior and confinement effect was investigated. Numerical results indicate that the axial load-deformation curve can be divided into four working stages where the contact pressure of curling rib arc gradually disappears as the steel tube buckles; increasing width-to-thickness (B/t) ratio can enhance the strength enhancement index (e.g., an increment of 1.88% from B/t=40 to B/t=100), though ultimate strength and ductility are decreased; stiffener length and lip inclination angle display a slight influence on strength enhancement index and ductility; construction preload can degrade the plastic deformation capacity and postpone the origin appearance of contact pressure, thus making a decrease of 14.81%~27.23% in ductility. Finally, a revised equation for determining strain εscy corresponding to ultimate strength was proposed to evaluate the plastic deformation capacity of built-up square CFST columns.

Designing a Magnetically Controlled Soft Gripper with Versatile Grasping Based on Magneto-Active Elastomer

  • Li, Rui;Li, Xinyan;Wang, Hao;Tang, Xianlun;Li, Penghua;Shou, Mengjie
    • Journal of Information Processing Systems
    • /
    • v.18 no.5
    • /
    • pp.688-700
    • /
    • 2022
  • A composite bionic soft gripper integrated with electromagnets and magneto-active elastomers is designed by combining the structure of the human hand and the snake's behavior of enhancing friction by actively adjusting the scales. A silicon-based polymer containing magnetized hard magnetic particles is proposed as a soft finger, and it can be reversibly bent by adjusting the magnetic field. Experiments show that the length, width, and height of rectangular soft fingers and the volume ratio of neodymium-iron-boron have different effects on bending angle. The flexible fingers with 20 vol% are the most efficient, which can bend to 90° when the magnetic field is 22 mT. The flexible gripper with four fingers can pick up 10.51 g of objects at the magnetic field of 105 mT. In addition, this composite bionic soft gripper has excellent magnetron performance, and it can change surface like snakes and operate like human hands. This research may help develop soft devices for magnetic field control and try to provide new solutions for soft grasping.

Comparison of the Physicochemical and Gelatinization Properties of Various Barley Cultivars (보리 품종의 이화화적 및 호화 특성 비교)

  • Tak, Eun Sook;Jung, Hee Nam
    • Journal of the Korean Society of Food Culture
    • /
    • v.37 no.4
    • /
    • pp.345-353
    • /
    • 2022
  • This study compared the physicochemical and gelatinization properties of naked barley, tetrastichum barley, and waxy barley. Compared to tetrastichum barley and waxy barley, naked barley had shorter and rounder grains with a 1.43 length/width ratio. Tetrastichum barley had lower crude protein, crude lipid, and crude ash content and higher amylose content compared to naked barley and waxy barley. The L, a, b color values of waxy barley were significantly higher than those of naked barley and tetrastichum barley. The water absorption index (WAI) and the water soluble index (WSI) were highest in waxy barley. The X-ray diffraction pattern was type A in all samples, and the peak intensity was highest in waxy barley. The maximum viscosity, cooling viscosity, breakdown, and setback of amylogram properties were the highest in tetrastichum barley. The thermal properties through the differential scanning calorimeter showed that the waxy barley had higher values of the onset, peak, conclusion temperature and enthalpy (?H). In conclusion, the variety of barley influenced the physicochemical and gelatinization properties, which could be important factors in the manufacture of processed foods. These results would thus useful inputs for the manufacturing of these foods using barley.

The Development of Embroidery Textile Design Using Machine Embroidery CAD System (기계자수 CAD시스템을 활용한 자수 텍스타일 디자인 전개)

  • Jungha Lim;Seungyeun Heo
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.24 no.4
    • /
    • pp.87-99
    • /
    • 2022
  • The purpose of this study is to develop machine embroidery textile designs for each technique that can be expressed using a single-headed computer embroidery sewing machine through a machine embroidery CAD system. For research, embroidery CAD utilized the Artistic digitizer, and the guillotine computer-mechanical magnetization machine used ELNA. The design concept was limited to portraits and relics of independence activists in six memorial halls built in Korea. The results of this study are as follows. First, it was found that the machine embroidery texture, which could only be produced by industries in the past, can be expand in the infinite creative embroidery design area by enabling the digitalization of motif images and the simulation of machine embroidery techniques through various layout options. Second, in the development of machine embroidery textures, it was found that the setting of the width, height, axis ratio, stitch, object, path, length, density, layer order, etc. in embroidery CAD is a very important part of determining the completeness of the embroidery results. Third, mechanical embroidery textile designs, which can be represented by single-head computer machine embroidery machine were able to show colorful embroidery results that differs from the original image by using seven main techniques and five deep technique alone or in combination, according to the designer's intention.

Correlation between Leaf Size and Seed Weight of Soybean (콩의 잎 크기와 종실 무게와의 상관)

  • Park, Gyu-Hwan;Baek, In Youl;Han, Won Young;Kang, Sung Taek;Choung, Myoung Gun;Ko, Jong Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.4
    • /
    • pp.383-387
    • /
    • 2013
  • This study was carried out to examine whether the leaf size is likely to be used as a selection criterion for large seed genotype in soybean (Glycine. max (L.) Merr.) breeding program. Two hundred twenty nine soybean germplasms which had collected in Korea, United States, China and Japan were used in this experiment. The area of unifoliate leaf, middle leaflet of first trifoliate and third trifoliate leaf ranged from $3.2cm^2$ to $33.8cm^2$, 9.2 to $29.5cm^2$, and 7.2 to $58.9cm^2$, respectively. One hundred seed weight also showed great variation from 2.7 to 39.0 gram. The average leaf area of unifoliate, middle leaflet of first trifoliate and third trifoliate leaf were $15.7cm^2$, $18.1cm^2$ and $32.7cm^2$, respectively, and that of seed average weight was 17.2 gram per one hundred seed. Significantly positive correlations were observed between seed weight and leaf area of unifoliate (r=$0.80^{**}$), first trifoliate (r=$0.75^{**}$) and third trifoliate (r=$0.67^{**}$), respectively. Both the leaf length and leaf width of unifoliate, middle leaflet of first trifoliate and third trifoliate leaf were significantly positively correlated with seed weight and both the correlations of unifoliate were higher than the other leaves. The correlations of leaf width in soybean leaflet were higher than those of leaf length. Leaf length/width (L/W) ratio of upper leaf was higher than that of lower leaf in the leaf size. Both the leaf area and leaf width of unifoliate leaf are the most suitable predictive characteristics of early selection in related to seed weight for soybean breeding program.