• Title/Summary/Keyword: length to diameter ratio

Search Result 798, Processing Time 0.029 seconds

Flame Length Scaling in a Non-premixed Turbulent Diluted Hydrogen Jet with Coaxial Air (희석된 동축공기 수소 난류확산화염의 화염 길이 스케일링)

  • Hwang, Jeong-Jae;Oh, Jeong-Seog;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.242-245
    • /
    • 2009
  • The effect of fuel composition on flame length was studied in a non-premixed turbulent diluted hydrogen jet with coaxial air. The observed flame length was expressed as a function of the ratio of coaxial air to fuel jet velocity and compared with a theoretical prediction based on the velocity ratio. Four cases of fuel mixed by volume were determined. In the present study, we derived a scaling correlation for predicting the flame length in a simple jet with coaxial air using the effective jet diameter in the near-field concept. The experimental results showed that visible flame length had a good relation with the theoretical prediction. The scaling analysis is also valid for diluted hydrogen jet flames with varied fuel composition.

  • PDF

Effect of Day Length on the Growth of Plug Seedlings and Bulbing after Planting in Onion (Allium cepa L.) (양파 공정육묘시 일장조건이 묘 생육 및 정식 후 구 비대에 미치는 영향)

  • 서전규
    • Journal of Bio-Environment Control
    • /
    • v.12 no.2
    • /
    • pp.101-105
    • /
    • 2003
  • This experiment was conducted to find out the effect of day length on the production of high quality plug seedlings in onion (Allium cepa L.). Two cultivars, ‘Changnyongdaego’ and‘Wolryun’, were grown to seedlings in 200-cell plug trays under 11.5, 12.5, 13.5 hours and natural day length. These seedlings were transplanted to the pot (16 cm In diameter) and grown under 16 hours day length. Number of leaves and neck diameter showed better growth in the longer than shorter day length treatments, but plant height old sheath length were retarded in the longer day length treatments. Growth such as no. of leaves, neck diameter, plant height and sheath length increased with the passage of day, but plant height and neck diameter decreased by treatment over 20 days with 13.5 hours day length. Bulbing and bulb size of onion after transplanting were enhanced in the seedlings cultured under longer day lengths. From the above results, treatment of long day length during seedling culture in plug tray can control the overgrowth and produce high quality plug seedlings.

Advanced Design of Birdcage RF Coil for Various Absorption Regions at 3T MRI System

  • Lee, Jung-Woo;Choe, Bo-Young;Choi, Chi-Bong;Huh, Soon-Nyoung
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.9 no.1
    • /
    • pp.48-60
    • /
    • 2005
  • Purpose: The purpose of this study was to design and build an optimized birdcage resonator configuration with a low pass filter, which would facilitate the acquisition of high-resolution 3D-image of small animals at 3T MRI system. Methods and Materials: The birdcage resonator with 12-element structures was built, in order to ensure B1 homogeneity over the image volume and maximum filling factor, and hence to maximize the signal to noise ratio (SNR) and resolution of the 3-dimensional images. The diameter and length of each element of a birdcage resonator were as follows: (1) diameter 13 cm, length 22 cm, (2) diameter 15 cm, length 22 cm, (3) diameter 17 cm, length 25 cm. Spin echo pulse sequence and fast spin echo pulse sequence were employed in obtaining MR images. The quality of the manufactured birdcage resonators wes evaluated on the basis of the return loss following matching and tuning process. Results: The experimental MR image of phantoms by the various manufactured birdcage resonators were obtained to compare the SNR in accordance with the size of objects. The size of an object to that of coil was identified by parameters that were estimated from the image of a phantom. First, the diameter of the birdcage resonator was 15cm, and the ratio of the tangerine to the birdcage resonator accounted for approximately 27%. The Q factor was 53.2 and the SNR was 150.7. Second, at the same birdcage resonator, the ratio of the orange was approximately 53%. The SNR and the Q parameter was 212.8 and 91.2, respectively. Conclusion: The present study demonstrated that if birdcage resonators have the same forms, SNR could be different depending on the size of an object, especially when the size of an object to that of coil is approximately 40~80%, the former is bigger than the latter. Therefore, when the size of an object to be observed is smaller than that of coil, the coil should be manufactured in accordance with the size of an object in order to obtain much more excellent images.

  • PDF

Buckling Behavior of Composite Cylindrical Shells Under Torsion (복합재 원통쉘의 비틀림좌굴 거동)

  • 강인식;이영신
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.9-12
    • /
    • 2000
  • This paper deals with the torsional buckling behavior of plain weave GFRP composite cylindrical shells having comparatively small length-to-diameter ratio. Boundary conditions corresponding to clamped ends and simply supported ends are considered. Torsional buckling loads and circumferential mode numbers according to the variation of shell length-to-radius ratio are conformed. To verify the availability of the theoretical results, comparison with the theoretical and experimental results are made.

  • PDF

Performance Study of Nozzleless Booster Casted to the High Density Solid Propellant with Zr as a Metal Fuel (고밀도 지르코늄(Zr) 금속연료 조성의 추진제를 이용한 무노즐 부스터 성능 연구)

  • Khil, Taeock;Jung, Eunhee;Lee, Kiyeon;Ryu, Taeha
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.38-51
    • /
    • 2018
  • This study was carried out to improve the performance characteristics of nozzleless boosters that are used in ramjet boosters. A propellant using Zr as the metal fuel was developed, which provided a higher density than the propellant using Al as the metal fuel. The developed propellant was cast using the nozzleless booster and a ground test was carried out by varying the length-to-diameter ratio (L/D ratio) of the propellant. From a comparison between the performance characteristics of propellants using Zr and Al, it was proved that the performance of the propellant using Zr is higher than that of propellant using Al, except for the specific impulse, under all tested conditions. As the length-to-diameter ratio was increased, the specific impulse of the propellant using Zr was decreased by 88% compared with that of the propellant with Al. However, because of the density difference between the propellants, the impulse density of the propellant with Zr was higher than that of the propellant with Al under all tested conditions.

Analysis of Plastic Hinge of Pile-Bent Structure with Varying Pile Diameters (단일형 현장타설말뚝의 소성힌지를 고려한 최적설계법 제안)

  • Ahn, Sang-Yong;Jeong, Sang-Seom;Kim, Jae-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.349-356
    • /
    • 2010
  • In this study, a new design method of pile bent structure considering plastic hinge was proposed on the basis of the beam-column model. Based on the analysis results, it is found that the positioning of plastic hinge on the pile bent structure was influenced by nonlinear behavior of material and p-$\Delta$ effect. Moreover, concrete cracking began to occur at the joint section between the pile and column in case of pile bent structure with different cross-sections. The plastic hinge can be developed on the pile bent structure when large displacement was occurred, and pile bent structures can be maintained well only if it is developed on the column part. Therefore, in this study, the optimized cross-section ratio between column and pile was analyzed to induce the plastic hinge at the joint section between the pile and column. Based on this, the optimized diameter ratio of pile and column can be obtained below the inflection point of the bi-linear curve depending on the relations between column-pile diameter ratio($D_c/D_p$) and normalized lateral cracking load ratio($F/F_{Dc=Dp}$). And through this study, it is founded that in-depth limit($L_{As}$=0.4%) normalized by the pile length($L_P$) are proportionally decreased as the pile length($L_P/D_P$) increases up to $L_P/D_P$=17.5, and beyond that in-depth limit converges to a constant value. Finally, it is found that the proposed limit depth by taking into account the minimum concrete-steel ratio would be more economical design of the pile bent structure.

  • PDF

Spray characteristics on mixing region scale of twin fluid atomizer (이류체 분사노즐의 혼합영역 형상에 따른 분무특성)

  • 김병문;김혁주;이충원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2147-2159
    • /
    • 1991
  • The effects of principal dimensions of internal mixing twin-fluid atomized and operating conditions on the atomizing characteristics are experimentally investigated. The tests are conducted over the wide range of air/liquid ratio to predict influences of the diameter and length of nozzle, contacting angle between air and liquid in the mixing chamber, and air orifice diameter on the mean drop size(SMD), spray angle, distribution of drop size, and spray dispersion, And also, initial distribution of liquid column by air stream within the mixing chamber are observed through the transparent nozzles. A He-Ne laser particle sizer(MALVERN Model 2604) was used to measure the Sauter.s mean diameter( $D_{321}$) and droplet sizes distribution. In this experiment the air/liquid ratio, mixing length and nozzle diameter have a great influence on SMD, spray angle, droplet sizes distribution and spray dispersion.

Design Optimization of a Cylindrical Film-Cooling Hole Using Neural Network Techniques (신경회로망기법을 사용한 원통형 막냉각 홀의 최적설계)

  • Lee, Ki-Don;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.12
    • /
    • pp.954-962
    • /
    • 2008
  • This study presents a numerical procedure to optimize the shape of cylindrical cooling hole to enhance film-cooling effectiveness. The RBNN method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer with shear stress transport turbulent model. The hole length-to-diameter ratio and injection angle are chosen as design variables and film-cooling effectiveness is considered as objective function which is to be maximized. Twelve training points are obtained by Latin Hypercube Sampling for two design variables. In the sensitivity analysis, it is found that the objective function is more sensitive to the injection angle of hole than the hole length-to diameter ratio. Optimum shape gives considerable increase in film-cooling effectiveness.

The Effect of the diameter and anastomotic angles on the compliance and the stress distribution of the end-to-side anastomosis (직경 및 문합각도가 단측 문합의 컴플라이언스 및 응력분포에 미치는 영향)

  • Han, G.J.;Kim, Y.H.;Kim, H.S.;Ann, S.C.;Jang, W.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.334-337
    • /
    • 1997
  • Von Mises stress and compliance distribution was evaluated using a finite element analysis on the end-to-side anastomosis of an artery with length of $20\sim24mm$, inner diameter of 4mm, thickness of 0.5mm and a PTFE graft with length of 10mm, inner diameter of 2mm, thickness of 0.2mm when the anastomotic angle was taken from $30^{\circ}\sim90^{\circ}$ in every $10^{\circ}$ and the diameter ratio from $0.1\sim1$ in every 0.1. The inner pressure of $1330dyne/mm^2$ was applied inside the 2 conduits. It was found that the compliance whose magnitude is larger on the acute angle anastomotic side than on the acute angle side became larger as the anastomotic angle became smaller and the diameter ratio larger and that the equivalent stress on the acute angle anastomotic side was larger than that on the abtuse angle side and became larger as the anastomotic angle and the diameter ratio became larger.

  • PDF

The Effect of the Diameter and Anastomotic Angle on the Compliance and the Stress Distribution of the End-to-side Anastomosis. (직경 및 문합각도가 단측 문합의 컴플라이언스 및 응력분포에 미치는 영향)

  • 한근조;김영호
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.183-188
    • /
    • 1998
  • Von Mises stress and compliance distribution was evaluated using a finite element analysis on the end-to-side anastomosis of an artery with length of 20-24mm, inner diameter of 4mm, thickness of 0.5mm and a PTFE graft with length of 10mm, inner diameter of 2mm, thickness of 0.2mm when the anastomotic angle was taken from 30$^{\circ}$~90$^{\circ}$ in every 10$^{\circ}$ and the diameter ratio from 0.1-1 in every 0.1. The inner pressure of 1330 dyne/$\textrm{mm}^2$ was applied inside the 2 conduits. It was found that the compliance whose magnitude is larger on the acute angle anastomotic side than on the abtuse angle side became larger as the anastomotic angle became smaller and the diameter ratio larger and that the equivalent stress on the acute angle anastomotic side was larger than that on the abtuse angle side and became larger as the anastomotic angle and the diameter ratio became larger.

  • PDF