• Title/Summary/Keyword: length of cycle

Search Result 837, Processing Time 0.033 seconds

Analysis of the Breakdown repair time of the Building Components in Public Rental-Housing Types (공공임대주택 유형별 부재의 사후보전 수선시기 설정연구)

  • Lee, KangHee;Ahn, YoungHan;Chae, ChangU
    • KIEAE Journal
    • /
    • v.13 no.6
    • /
    • pp.129-136
    • /
    • 2013
  • The rental housing has played a key role to supply a decent living space for the low-income households. The owner of the rental housing should maintain and manage the building physical condition. On the other hand, rents should use the housing without any damage and pay a certain fare for the rent. A rent is classified into two types : private and public. The public rent is mainly to supply a living space for non-available home owner with a low-rent fare. Many of public rent are built and supplied by the public institution or local government. The supplier would take a responsibility to maintain the building and components, reflected by the maintenance plan and repair scope. In this paper, it aimed at providing the repair time in building components of the public rental housing such as lighting, electrical cable, paintings and etc.. The repair time is analyzed with three calculation methods which are solved by the probability and empirical approach. Results are as follows : First, the repair time of the electrical facilities are maintained with 11yr, 10yr and 7 in permanent, public and redevelopment rent respectively. The roof proof has a repair time with 14yr, 11yr and 8 in permanent, public and redevelopment rent housing respectively. Second, Most of the components has a prior length of the repair time in permanent, public and redevelopment rent sequently. There is a difference in repair time according to the rental types. Therefore, it would continue to research the difference in aspect of the living style, building physics, living consciousness and etc.

Comparison of Plant Growth and Morphological Characteristics Among the Korean Ginseng, the American Ginseng and the Bamboo Ginseng (고려인삼, 미국삼 및 죽절삼의 생육 및 형태적 특성 비교)

  • 정열영;이명구
    • Journal of Ginseng Research
    • /
    • v.22 no.2
    • /
    • pp.147-153
    • /
    • 1998
  • An investigation was conducted to ascertain the basic information on characteristics of growth and morphological characters among the Korean (Panax. ginseng), the American (Panax. quinquefolium) and the Bamboo (Panax. japonicus) ginseng. In aerial parts growth of the ginseng species by age, The Korean ginseng and American ginseng's stem and leaf growth was alike in 2-4 years old, but growth cycle changed in 6 years old. The Korean ginseng was more vigorous than the American ginseng. The Korean ginseng roots were highly observed in ratio of red skin roots among three species, whereas The American ginseng roots were highly infected by root rot. It seems to be variable depending on growing stage and species. The Korean ginseng flowered about the middle of May, the American ginseng early June, and the Bamboo ginseng was late of May, The berry color of the ginseng species was observed, The Korean and American ginseng's mature berry color was red, The Bamboo ginseng's berry was three type of color and shape. In root characteristics of the seedling, Korean (p. ginseng), American (p. quinquefolium) ginseng's root shape was similarity in type, the bamboo ginseng showed different type, which root length and root weight was smaller than those of ginseng. In morphological characters of Leaf surface, pollen, and stoma, the Korean ginseng and American ginseng had crystal rosette on epidermis cell, but the Bamboo ginseng didn't has crystal rosette. Pollen shape observed tricolpate pollen and size was media type among the ginseng species, and also guard cell was anomocytic type, which were observed by scanning electronic microscope.

  • PDF

An Experimental Study on Aerodynamic Characteristics of a Flapping Wing (플래핑 날개의 공력특성에 관한 실험적 연구)

  • Song, Woo-Gil;Chang, Jo-Won;Jeon, Chang-Su
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.4
    • /
    • pp.8-16
    • /
    • 2009
  • An experimental study was carried out to investigate aerodynamic characteristics on reduced frequency of flapping wings. The half span of the wing is 28cm, and the mean chord length of wing is 10cm. In flight, the Reynolds Number range of birds is about $10^4$, and the reduced frequency during a level flight is 0.25. The experimental variables of present study were set to have similar conditions with the bird flight's one. The freestream velocities in a wind tunnel were 2.50, 3.75 and $5.00^m/s$, and the corresponding Reynolds numbers were $1.7{\times}10^4$, $2.5{\times}10^4$ and $3.3{\times}10^4$, respectively. The wing beat frequencies of an experimental model were 2, 3 and 4Hz, and the corresponding reduced frequency was decided between 0.1 and 0.5. Aerodynamic forces of an experimental flapping model were measured by using 2 axis load-cell. Inertial forces measured in a vacuum chamber were removed from measuring forces in the wind tunnel in order to acquire pure aerodynamic forces. Hall sensors and laser trigger were used to make sure the exact position of wings during the flapping motion. Results show that the ratio of downstroke in a wing beat cycle is increased as a wing beat frequency increases. The instantaneous lift coefficient is the maximum value at the end of downstroke of flapping wing model. It is found that a critical reduced frequency with large lift coefficient is existed near k=0.25.

  • PDF

Firing Test of Core Engine for Pre-cooled Turbojet Engine

  • Taguchi, Hideyuki;Sato, Tetsuya;Kobayashi, Hiroaiki;Kojima, Takayuki;Fukiba, Katsuyoshi;Masaki, Daisaku;Okai, Keiichi;Fujita, Kazuhisa;Hongoh, Motoyuki;Sawai, Shujiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.115-121
    • /
    • 2008
  • A core engine for pre-cooled turbojet engines is designed and its component performances are examined both by CFD analyses and experiments. The engine is designed for a flight demonstration of precooled turbojet engine cycle. The engine uses gas hydrogen as fuel. The external boundary including measurement devices is set within $23cm{\times}23cm$ of rectangular cross section, in order to install the engine downstream of the air intake. The rotation speed is 80000 rpm at design point. Mixed flow compressor is selected to attain high pressure ratio and small diameter by single stage. Reverse type main combustor is selected to reduce the engine diameter and the rotating shaft length. The temperature at main combustor is determined by the temperature limit of non-cooled turbine. High loading turbine is designed to attain high pressure ratio by single stage. The firing test of the core engine is conducted using components of small pre-cooled turbojet engine. Gas hydrogen is injected into the main burner and hot gas is generated to drive the turbine. Air flow rate of the compressor can be modulated by a variable geometry exhaust nozzle, which is connected downstream of the core engine. As a result, 75% rotation speed is attained without hazardous vibration and heat damage. Aerodynamic performances of both compressor and turbine are obtained and evaluated independently.

  • PDF

Dynamic Characteristics of Coaxial Swirl-jet Injector with Acoustic Excitation (동축형 스월-제트 분사기의 음향가진에 따른 동특성)

  • Bae, Jinhyun;Kim, Taesung;Jeong, Seokgyu;Jeong, Chanyeong;Choi, Jeong Yeol;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.99-107
    • /
    • 2018
  • In this study, the injector transfer function (ITF) of a gas-gas coaxial jet-swirl injector is measured by perturbing jet or swirl flow using a speaker as jet flow increases. As a result of measuring the ITF varying feed system length, a peak occurs at a resonance frequency of space where the perturbed flow passes. With jet excitation, the ITF magnitude decreases, but increases thereafter as increasing the jet flow. Therefore the larger the velocity difference between jet and swirl flow, the larger the ITF. With swirl excitation, ITF decreases as increasing the jet flow because of the energy decrease with respect to the constant downstream flow.

Performance Evaluation of Propane(R290)/Isobutane(R600a) Mixture as a Substitute for CFC12 in Domestic Refrigerators (프로판/이소부탄 혼합냉매를 적용한 가정용 냉장고의 성능에 관한 연구)

  • Lim, B.H.;Park, Y.B.;Yoo, H.K.;Jung, D.S.;Kim, C.B.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.249-265
    • /
    • 1995
  • The performance of a refrigerant mixture of propane(R290)/isobutane(R600a) as a substitute for CFC12 was investigated in a domestic refrigerator with single evaporator. A thermodynamic cycle simulation indicated an increase in COP of a 1.7 to 2.4% with R-290/600a in the composition range of 0.2 to 0.6 mass fraction of R290 compared to CFC12. For the tests, two units($299{\ell}$, $465{\ell}$) were used. All refrigeration components remained the same throughout the tests, except that the length of capillary tube and amount of charge were changed for the mixture. The refrigerators were fully instrumented with more than 20 thermocouples, 2 pressure transducers, and watt/watt-hour meter for each refrigerator. 'Energy consumption test' and 'no load pulldown test' were performed under the same condition. The experimental results obtained with the same compressor indicated that R-290/600a mixture at 0.6 mass fraction of R290 showed a 3 to 5% increase in energy efficiency and a faster cooling speed compared to CFC12. The R-290/600a mixture showed a shorter compressor on-time and a lower compressor dome temperature than CFC12. In conclusion, the proposed hydrocarbon mixture seems to be an appropriate candidate to replace CFC12 without causing more environmental problems.

  • PDF

Blast Design for Improvement of Limestone Fragmentation (석회석 파쇄도 향상을 위한 발파 설계)

  • Piyush, Rai;Yang, Hyung-Sik
    • Explosives and Blasting
    • /
    • v.28 no.1
    • /
    • pp.19-26
    • /
    • 2010
  • The paper presents a case study of a limestone quarry of the Philippines, where major problems in terms of improper fragmentation, poor wall control, and poor heave of the muck pile were witnessed. The paper highlights the significant role of switching over from diagonal firing pattern to V-type firing pattern, and also of making suitable adjustments in the stemming column length for improved confinement and gas retention. The study revealed that by making aforesaid design modifications in the blast round, marked improvement in blasting results was registered. Looking at the results, it was further contemplated to expand the mesh area in the subsequent blast rounds. The mesh area was incremented from the existing $8.96m^2$ to $12m^2$. The results were meticulously registered in the field, and clearly depicted definite improvements in the blast results in terms of increased P.F., reduced boulder count, reduced FEL cycle time, reduced dozing hours and improved heave.

A Study on the Fatigue Crack Propagation Behavior in F.F. Shaft Materials of Vehicle with Small Circular Defect at Variable Temperature (미소원공결함을 갖는 자동차 전류구동축재의 온도변화에 따른 피로크랙전파거동에 관한 연구)

  • Lee, S.R.;Lee, D.G.;Chung, J.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.185-194
    • /
    • 1998
  • In this study, the rotary bending fatigue test was carried out with two kinds of material, S43C and S50C, using in the Front engine and Front drive wheels(F.F.) of vehicle. The one part of specimens was heated by high frequency induction method(about 1mm depth and $H_RC$ 56~60) and tested environment temperature were $-30^{\circ}C$, $+25^{\circ}C$ and $+80^{\circ}C$ in order to look over the influence of the heat treatment and the temperatures. In the experimented result at $+25^{\circ}C$ and $+80^{\circ}C$, the fatigue life of non-heated specimens were decreased about 35%, but that of heated specimens were decreased about only 5% at $+80^{\circ}C$ more than at $25^{\circ}C$. And in the experiment result at $-30^{\circ}C$ and $+25^{\circ}C$, the non-heated and heated specimens were about 110%, 120% higher fatigue life at $-30^{\circ}C$ than at the $+25^{\circ}C$ each other. On the other hand, the fatigue crack propagation rate of S50C was higher than that of S43C.

  • PDF

Prediction of stress intensity factor range for API 5L grade X65 steel by using GPR and MPMR

  • Murthy, A. Ramachandra;Vishnuvardhan, S.;Saravanan, M.;Gandhi, P.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.565-574
    • /
    • 2022
  • The infrastructures such as offshore, bridges, power plant, oil and gas piping and aircraft operate in a harsh environment during their service life. Structural integrity of engineering components used in these industries is paramount for the reliability and economics of operation. Two regression models based on the concept of Gaussian process regression (GPR) and Minimax probability machine regression (MPMR) were developed to predict stress intensity factor range (𝚫K). Both GPR and MPMR are in the frame work of probability distribution. Models were developed by using the fatigue crack growth data in MATLAB by appropriately modifying the tools. Fatigue crack growth experiments were carried out on Eccentrically-loaded Single Edge notch Tension (ESE(T)) specimens made of API 5L X65 Grade steel in inert and corrosive environments (2.0% and 3.5% NaCl). The experiments were carried out under constant amplitude cyclic loading with a stress ratio of 0.1 and 5.0 Hz frequency (inert environment), 0.5 Hz frequency (corrosive environment). Crack growth rate (da/dN) and stress intensity factor range (𝚫K) values were evaluated at incremental values of loading cycle and crack length. About 70 to 75% of the data has been used for training and the remaining for validation of the models. It is observed that the predicted SIF range is in good agreement with the corresponding experimental observations. Further, the performance of the models was assessed with several statistical parameters, namely, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Coefficient of Efficiency (E), Root Mean Square Error to Observation's Standard Deviation Ratio (RSR), Normalized Mean Bias Error (NMBE), Performance Index (ρ) and Variance Account Factor (VAF).

Evaluation of Particle Removal Rate in Inclined-pipe Settling System for Stormwater Infiltration (강우유출수의 침투시 부하저감을 위한 경사관 침전장치의 효율평가)

  • Kim, Sangrae;Kim, Dongkeun;Mun, Jungsoo;Han, Mooyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.719-726
    • /
    • 2009
  • One of the alternative runoff management measures is on-site runoff mitigation, such as rainwater retention tank and infiltration facilities especially the latter that is possible to manage simultaneously runoff quality and quantity as a perspective of water-cycle. This study was conducted to develop a particle separator, inclined-pipe settling system, that could improve particle removal efficiency of road runoff as a pre-treatment device of stormwater infiltration. Solid particles larger than $100{\mu}m$ are separated by simple sedimentation; however, the significant amount of pollutants with a diameter less than $100{\mu}m$ remain in suspension. Without any treatment in that case of the runoff into infiltrate, groundwater would be deteriorated and also infiltration rate would be decreased by clogging. Therefore, we suggest optimal design parameters (inclined angle, pipe length, and surface loading rate) of inclined-pipe settling system which can be designed to effectively remove particles diameter smaller then $70{\mu}m$. Thus, the results showed TSS removal efficiency more than 80% with a particle diameter between $20{\mu}m$ and $70{\mu}m$, 100% above particle diameter $70{\mu}m$ for the inflow rate $0.018 m^3/m^2{\cdot}hr$ with pipe inclined at angle $15^{\circ}$.