• Title/Summary/Keyword: left-censoring

Search Result 15, Processing Time 0.021 seconds

The Estimation of Mean Residual Life Function under Left Truncation and Right Censoring Model

  • Moon, Gyoung-Ae;Shin, Im-Hee;Chae, Hyeon-Suk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.6 no.2
    • /
    • pp.65-76
    • /
    • 1995
  • The importance of left truncated and right censoring cases has considered for better information in medical follow-up and engineering life testing studies. We propose some estimation procedure for the mean residual life function with consistency and asymptotic normality on the left truncated and right censoring model. And then, the comparision with Kaplan-Meier estimator ignoring the left truncated effect and the small sample properities are investigated by asymptotic biases and M.S.E.'s thresh Monte Carlo study.

  • PDF

The Asymptotic Properties of Mean Residual Life Function on Left Truncated and Right Censoring Model

  • Moon, Kyoung-Ae;Shin, Im-Hee
    • Journal of the Korean Data and Information Science Society
    • /
    • v.8 no.1
    • /
    • pp.99-109
    • /
    • 1997
  • The estimation procedure of mean residual life function has been placed an important role in the study of survival analysis. In this paper, the product limit estimator on left truncated and right censoring model is proposed with asymptotic properties. Also, the small sample properties are investigated through the Monte Carlo study and the proposed product limit type estimator is compared with ordinary Kaplan-Meier type estimator.

  • PDF

Bootstrapped Confidence Bands for Quantile Function under LTRC Model

  • Cho, Kil-Ho;Chae, Hyeon-Sook;Choi, Dal-Woo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.8 no.1
    • /
    • pp.49-58
    • /
    • 1997
  • We consider the quantile function for the bootstrapped product limit estimate under left truncation and right censoring model and show its weak convergence. We also obtain bootstrapped confidence bands for the quantile function.

  • PDF

Regression Quantiles Under Censoring and Truncation

  • Park, Jin-Ho;Kim, Jin-Mi
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.3
    • /
    • pp.807-818
    • /
    • 2005
  • In this paper we propose an estimation method for regression quantiles with left-truncated and right-censored data. The estimation procedure is based on the weight determined by the Kaplan-Meier estimate of the distribution of the response. We show how the proposed regression quantile estimators perform through analyses of Stanford heart transplant data and AIDS incubation data. We also investigate the effect of censoring on regression quantiles through simulation study.

A Comparison of Analysis Methods for Work Environment Measurement Databases Including Left-censored Data (불검출 자료를 포함한 작업환경측정 자료의 분석 방법 비교)

  • Park, Ju-Hyun;Choi, Sangjun;Koh, Dong-Hee;Park, Donguk;Sung, Yeji
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.1
    • /
    • pp.21-30
    • /
    • 2022
  • Objectives: The purpose of this study is to suggest an optimal method by comparing the analysis methods of work environment measurement datasets including left-censored data where one or more measurements are below the limit of detection (LOD). Methods: A computer program was used to generate left-censored datasets for various combinations of censoring rate (1% to 90%) and sample size (30 to 300). For the analysis of the censored data, the simple substitution method (LOD/2), β-substitution method, maximum likelihood estimation (MLE) method, Bayesian method, and regression on order statistics (ROS)were all compared. Each method was used to estimate four parameters of the log-normal distribution: (1) geometric mean (GM), (2) geometric standard deviation (GSD), (3) 95th percentile (X95), and (4) arithmetic mean (AM) for the censored dataset. The performance of each method was evaluated using relative bias and relative root mean squared error (rMSE). Results: In the case of the largest sample size (n=300), when the censoring rate was less than 40%, the relative bias and rMSE were small for all five methods. When the censoring rate was large (70%, 90%), the simple substitution method was inappropriate because the relative bias was the largest, regardless of the sample size. When the sample size was small and the censoring rate was large, the Bayesian method, the β-substitution method, and the MLE method showed the smallest relative bias. Conclusions: The accuracy and precision of all methods tended to increase as the sample size was larger and the censoring rate was smaller. The simple substitution method was inappropriate when the censoring rate was high, and the β-substitution method, MLE method, and Bayesian method can be widely applied.

Use of Lèvy distribution to analyze longitudinal data with asymmetric distribution and presence of left censored data

  • Achcar, Jorge A.;Coelho-Barros, Emilio A.;Cuevas, Jose Rafael Tovar;Mazucheli, Josmar
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.1
    • /
    • pp.43-60
    • /
    • 2018
  • This paper considers the use of classical and Bayesian inference methods to analyze data generated by variables whose natural behavior can be modeled using asymmetric distributions in the presence of left censoring. Our approach used a $L{\grave{e}}vy$ distribution in the presence of left censored data and covariates. This distribution could be a good alternative to model data with asymmetric behavior in many applications as lifetime data for instance, especially in engineering applications and health research, when some observations are large in comparison to other ones and standard distributions commonly used to model asymmetry data like the exponential, Weibull or log-logistic are not appropriate to be fitted by the data. Inferences for the parameters of the proposed model under a classical inference approach are obtained using a maximum likelihood estimators (MLEs) approach and usual asymptotical normality for MLEs based on the Fisher information measure. Under a Bayesian approach, the posterior summaries of interest are obtained using standard Markov chain Monte Carlo simulation methods and available software like SAS. A numerical illustration is presented considering data of thyroglobulin levels present in a group of individuals with differentiated cancer of thyroid.

A General Mixed Linear Model with Left-Censored Data

  • Ha, Il-Do
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.6
    • /
    • pp.969-976
    • /
    • 2008
  • Mixed linear models have been widely used in various correlated data including multivariate survival data. In this paper we extend hierarchical-likelihood(h-likelihood) approach for mixed linear models with right censored data to that for left censored data. We also allow a general random-effect structure and propose the estimation procedure. The proposed method is illustrated using a numerical data set and is also compared with marginal likelihood method.

Robust Regression and Stratified Residuals for Left-Truncated and Right-Censored Data

  • Kim, Chul-Ki
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.3
    • /
    • pp.333-354
    • /
    • 1997
  • Computational algorithms to calculate M-estimators and rank estimators of regression parameters from left-truncated and right-censored data are developed herein. In the case of M-estimators, new statistical methods are also introduced to incorporate leverage assements and concomitant scale estimation in the presence of left truncation and right censoring on the observed response. Furthermore, graphical methods to examine the residuals from these data are presented. Two real data sets are used for illustration.

  • PDF

An Analysis of the Impact of Climatic Elements on the Jellyfish Blooms (기후 요소가 해파리 출현에 미치는 영향 분석)

  • KIM, Bong-Tae;EOM, Ki-Hyuk;HAN, In-Seong;PARK, Hye-Jin
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.6
    • /
    • pp.1755-1763
    • /
    • 2015
  • The objective of this study is to empirically analyze the relationship between sea temperature and jellyfish blooms. Ever since the 2000s, jellyfish population has been dramatically increased, which brought negative influence on the national health and the fisheries activities. Jellyfish blooms have been recognized as an effect of climate change, but there has been no empirical evidence to support such relationship. In this paper, the relationship between sea temperature and jellyfish blooms has been analyzed by using the regional jellyfish monitoring data and coastal stationary observing data of National Institute of Fisheries Science. Since the dependant variable carries left censoring issues, we used the panel tobit model. Our results indicate that there are statistically significant positive relationship between sea temperature and jellyfish blooms.