• Title/Summary/Keyword: left derivation

Search Result 50, Processing Time 0.019 seconds

LEFT DERIVATIONS ON BANACH ALGEBRAS

  • Jung, Yong-Soo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.8 no.1
    • /
    • pp.37-44
    • /
    • 1995
  • In this paper we show that every left derivation on a semiprime Banach algebra A is a derivation which maps A into the intersection of the center of A and the Jacobson radical of A, and hence every left derivation on a semisimple Banach algebra is zero.

  • PDF

ON LEFT DERIVATIONS AND DERIVATIONS OF BANACH ALGEBRAS

  • Jung, Yong-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.659-667
    • /
    • 1998
  • In this paper we show that every left derivation on a semiprime Banach algebra A is a derivation which maps A into the intersection of the center of A and the Jacobson radical of A, and hence every left derivation on a semisimple Banach algebra is always zero.

  • PDF

LEFT DERIVATIONS AND DERIVATIONS ON BANACH ALGEBRAS

  • YONG-SOO JUNG
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.1
    • /
    • pp.263-271
    • /
    • 1997
  • In this paper we show that every left derivation on a semiprime Banach algebra A is a derivation which maps A into the intersection of the center of A and the jacobson radical of A and hence every left derivation on a semisimple Banach algebra is always zero.

LEFT JORDAN DERIVATIONS ON BANACH ALGEBRAS AND RELATED MAPPINGS

  • Jung, Yong-Soo;Park, Kyoo-Hong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.151-157
    • /
    • 2010
  • In this note, we obtain range inclusion results for left Jordan derivations on Banach algebras: (i) Let $\delta$ be a spectrally bounded left Jordan derivation on a Banach algebra A. Then $\delta$ maps A into its Jacobson radical. (ii) Let $\delta$ be a left Jordan derivation on a unital Banach algebra A with the condition sup{r$(c^{-1}\delta(c))$ : c $\in$ A invertible} < $\infty$. Then $\delta$ maps A into its Jacobson radical. Moreover, we give an exact answer to the conjecture raised by Ashraf and Ali in [2, p. 260]: every generalized left Jordan derivation on 2-torsion free semiprime rings is a generalized left derivation.

JORDAN DERIVATIONS AND JORDAN LEFT DERIVATIONS OF BANACH ALGEBRAS

  • Park, Kyoo-Hong;Jung, Yong-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.2
    • /
    • pp.245-252
    • /
    • 2002
  • In this paper we obtain some results concerning Jordan derivations and Jordan left derivations mapping into the Jacobson radical. Our main result is the following : Let d be a Jordan derivation (resp. Jordan left derivation) of a complex Banach algebra A. If d$^2$(x) = 0 for all x $\in$ A, then we have d(A) ⊆ red(A)

HIGHER LEFT DERIVATIONS ON SEMIPRIME RINGS

  • Park, Kyoo-Hong
    • The Pure and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.355-362
    • /
    • 2010
  • In this note, we extend the Bresar and Vukman's result [1, Proposition 1.6], which is well-known, to higher left derivations as follows: let R be a ring. (i) Under a certain condition, the existence of a nonzero higher left derivation implies that R is commutative. (ii) if R is semiprime, every higher left derivation on R is a higher derivation which maps R into its center.