• Title/Summary/Keyword: leather hardening

Search Result 2, Processing Time 0.017 seconds

Analysis of the change in appearance according to the hardening method of leather (가죽의 경화방법에 따른 외형변화 분석)

  • Youshin, Park
    • Journal of Fashion Business
    • /
    • v.26 no.5
    • /
    • pp.122-134
    • /
    • 2022
  • This study is conducted on hardening leather with improved firmness and stability of shape, based on research on types and thickness of leather. The purpose of this study is to test the physical properties of the leather for molding to prepare the foundation for leather molding based on the test results using four methods by thickness of Vegetable and Split. The tests were conducted using a total of five leather types, including three types of vegetable leathers and two types of split, by thickness. Based on the testing method for leathers in KS M 6882, the tests were performed at 27℃ with relative humidity of 65±20%. The samples were prepared with cowhide, size 9cm× 2cm. The measurement parameters are length and width. thickness, volume, mass, density. Regarding the hardening treatment method, changes in appearance and major physical characteristics of leather were reviewed by soaking in hot water, dry heating, hammering, waxing, and olive oil coating. The study results are as follows. In planar works, it is judged that hardening work using a hammer is more suitable for stiffness or density in order to prevent easy breakage with adult muscle density, rather than boiling water or baking. In conclusion, there is no curling, soot, or breaking phenomenon, and the densest curing method is 50℃ for 20 sec of V2 and 75℃ for 60 sec of V2 in boiling water. The combination of paraffin treatment improve waterproof and quality.

Physical Properties of Flame Retardant Particulate Reinforced Thermoplastic Polymer Composites for Cold-Resistant Cable (내한성 케이블 적용을 위한 난연 입자 강화 열가소성 고분자복합재료의 기계적 특성평가)

  • Lee, Jinwoo;Shim, Seung Bo;Park, Jae Hyung;Lee, Ji Eun
    • Composites Research
    • /
    • v.35 no.5
    • /
    • pp.309-316
    • /
    • 2022
  • The demand for cold-resistant cable material is increasing due to the rapid increase in the development of devices that operate in a low temperature environment. Cold tolerance of a thermoplastic polymer largely depends on the type and content of about 20 or more additives used to make the polymer. The phenomenon of polymer hardening at low temperature can be classified into hardening by simple temperature effect, embrittlement at the glass transition temperature, and hardening by crystallization of polymers that tend to crystallize. In this study, a thermoplastic polymer having a low glass transition temperature, a flame retardant, and an additive were mixed to evaluate the mechanical properties of a thermoplastic polymer composite material for electric wires. It has been confirmed that mechanical properties and processability are determined depending on the additives and compatibilizers added, and this study is considered to be useful as basic data for optimization to meet the performance requirements of wires developed for low-temperature use.