• 제목/요약/키워드: least squares support vector machines

검색결과 17건 처리시간 0.018초

최소제곱 서포터벡터기계 형태의 준지도분류 (Semi-supervised classification with LS-SVM formulation)

  • 석경하
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권3호
    • /
    • pp.461-470
    • /
    • 2010
  • 라벨 있는 자료가 분류규칙을 만들 만큼 충분하지 않거나, 라벨 없는 자료가 분류규칙을 만드는데 도움을 줄 수 있는 경우에는 라벨 있는 자료와 라벨 없는 자료를 모두 사용하는 준지도분류가 더 효과적이다. 준지도분류 중 그래프기반 다양체정칙법이 개발되어 최근에 많은 연구가 이루어지고 있다. 본 연구에서는 통계적학습에서 좋은 성능을 보이는 최소제곱 서포터벡터기계를 준지도분류에 적용시키는 방법을 제안한다. 모의실험을 통해 제안된 방법이 라벨 없는 자료를 잘 활용하는 것을 볼 수 있었다.

LS-SVM for large data sets

  • Park, Hongrak;Hwang, Hyungtae;Kim, Byungju
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권2호
    • /
    • pp.549-557
    • /
    • 2016
  • In this paper we propose multiclassification method for large data sets by ensembling least squares support vector machines (LS-SVM) with principal components instead of raw input vector. We use the revised one-vs-all method for multiclassification, which is one of voting scheme based on combining several binary classifications. The revised one-vs-all method is performed by using the hat matrix of LS-SVM ensemble, which is obtained by ensembling LS-SVMs trained using each random sample from the whole large training data. The leave-one-out cross validation (CV) function is used for the optimal values of hyper-parameters which affect the performance of multiclass LS-SVM ensemble. We present the generalized cross validation function to reduce computational burden of leave-one-out CV functions. Experimental results from real data sets are then obtained to illustrate the performance of the proposed multiclass LS-SVM ensemble.

Modeling mechanical strength of self-compacting mortar containing nanoparticles using wavelet-based support vector machine

  • Khatibinia, Mohsen;Feizbakhsh, Abdosattar;Mohseni, Ehsan;Ranjbar, Malek Mohammad
    • Computers and Concrete
    • /
    • 제18권6호
    • /
    • pp.1065-1082
    • /
    • 2016
  • The main aim of this study is to predict the compressive and flexural strengths of self-compacting mortar (SCM) containing $nano-SiO_2$, $nano-Fe_2O_3$ and nano-CuO using wavelet-based weighted least squares-support vector machines (WLS-SVM) approach which is called WWLS-SVM. The WWLS-SVM regression model is a relatively new metamodel has been successfully introduced as an excellent machine learning algorithm to engineering problems and has yielded encouraging results. In order to achieve the aim of this study, first, the WLS-SVM and WWLS-SVM models are developed based on a database. In the database, nine variables which consist of cement, sand, NS, NF, NC, superplasticizer dosage, slump flow diameter and V-funnel flow time are considered as the input parameters of the models. The compressive and flexural strengths of SCM are also chosen as the output parameters of the models. Finally, a statistical analysis is performed to demonstrate the generality performance of the models for predicting the compressive and flexural strengths. The numerical results show that both of these metamodels have good performance in the desirable accuracy and applicability. Furthermore, by adopting these predicting metamodels, the considerable cost and time-consuming laboratory tests can be eliminated.

Real-time Fault Detection in Semiconductor Manufacturing Process : Research with Jade Solution Company

  • Kim, Byung Joo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제9권2호
    • /
    • pp.20-26
    • /
    • 2017
  • Process control is crucial in many industries, especially in semiconductor manufacturing. In such large-volume multistage manufacturing systems, a product has to go through a very large number of processing steps with reentrant) before being completed. This manufacturing system has many machines of different types for processing a high mix of products. Each process step has specific quality standards and most of them have nonlinear dynamics due to physical and/or chemical reactions. Moreover, many of the processing steps suffer from drift or disturbance. To assure high stability and yield, on-line quality monitoring of the wafers is required. In this paper we develop a real-time fault detection system on semiconductor manufacturing process. Proposed system is superior to other incremental fault detection system and shows similar performance compared to batch way.

Kernel Methods를 이용한 Human Breast Cancer의 subtype의 분류 및 Feature space에서 Clinical Outcome의 pattern 분석 (Subtype classification of Human Breast Cancer via Kernel methods and Pattern Analysis of Clinical Outcome over the feature space)

  • Kim, Hey-Jin;Park, Seungjin;Bang, Sung-Uang
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.175-177
    • /
    • 2003
  • This paper addresses a problem of classifying human breast cancer into its subtypes. A main ingredient in our approach is kernel machines such as support vector machine (SVM). kernel principal component analysis (KPCA). and kernel partial least squares (KPLS). In the task of breast cancer classification, we employ both SVM and KPLS and compare their results. In addition to this classification. we also analyze the patterns of clinical outcomes in the feature space. In order to visualize the clinical outcomes in low-dimensional space, both KPCA and KPLS are used. It turns out that these methods are useful to identify correlations between clinical outcomes and the nonlinearly protected expression profiles in low-dimensional feature space.

  • PDF

Impurity profiling and chemometric analysis of methamphetamine seizures in Korea

  • Shin, Dong Won;Ko, Beom Jun;Cheong, Jae Chul;Lee, Wonho;Kim, Suhkmann;Kim, Jin Young
    • 분석과학
    • /
    • 제33권2호
    • /
    • pp.98-107
    • /
    • 2020
  • Methamphetamine (MA) is currently the most abused illicit drug in Korea. MA is produced by chemical synthesis, and the final target drug that is produced contains small amounts of the precursor chemicals, intermediates, and by-products. To identify and quantify these trace compounds in MA seizures, a practical and feasible approach for conducting chromatographic fingerprinting with a suite of traditional chemometric methods and recently introduced machine learning approaches was examined. This was achieved using gas chromatography (GC) coupled with a flame ionization detector (FID) and mass spectrometry (MS). Following appropriate examination of all the peaks in 71 samples, 166 impurities were selected as the characteristic components. Unsupervised (principal component analysis (PCA), hierarchical cluster analysis (HCA), and K-means clustering) and supervised (partial least squares-discriminant analysis (PLS-DA), orthogonal partial least squares-discriminant analysis (OPLS-DA), support vector machines (SVM), and deep neural network (DNN) with Keras) chemometric techniques were employed for classifying the 71 MA seizures. The results of the PCA, HCA, K-means clustering, PLS-DA, OPLS-DA, SVM, and DNN methods for quality evaluation were in good agreement. However, the tested MA seizures possessed distinct features, such as chirality, cutting agents, and boiling points. The study indicated that the established qualitative and semi-quantitative methods will be practical and useful analytical tools for characterizing trace compounds in illicit MA seizures. Moreover, they will provide a statistical basis for identifying the synthesis route, sources of supply, trafficking routes, and connections between seizures, which will support drug law enforcement agencies in their effort to eliminate organized MA crime.

서브 밴드 CSP기반 FLD 및 PCA를 이용한 동작 상상 EEG 특징 추출 방법 연구 (A Method of Feature Extraction on Motor Imagery EEG Using FLD and PCA Based on Sub-Band CSP)

  • 박상훈;이상국
    • 정보과학회 논문지
    • /
    • 제42권12호
    • /
    • pp.1535-1543
    • /
    • 2015
  • 뇌-컴퓨터 인터페이스는 사용자의 뇌전도(Electroencephalogram: EEG)를 획득하여 생각만으로 기계를 제어하거나 신체장애를 가진 사람에게 손 또는 발과 같은 신체를 대신하여 의사 전달 수단으로 사용될 수 있다. 본 논문에서는 동작 상상 EEG를 분류하기 위해 Sub-Band Common Spatial Pattern(SBCSP)를 기반으로 필터 선택을 하지 않는 특징 추출 방법에 대해 연구한다. 4~40Hz의 동작 상상 신호를 4Hz 대역마다 나눈 9개의 서브 밴드에 각각 CSP를 적용한다. 이후 Fisher's Linear Discriminant(FLD)를 사용하여 도출된 값들을 결합한 FLD 점수 벡터에 차원 축소를 위한 Principal Component Analysis(PCA)를 적용하여 클래스 구분을 위한 최적의 평면에 특징을 투영한다. 데이터베이스는 BCI CompetitionIII dataset IVa(2 클래스: 오른손 다리)를 이용하며, 추출된 특징은 Least Squares Support Vector Machine(LS-SVM)의 입력으로 사용된다. 제안된 방법의 성능은 $10{\times}10$ fold cross-validation을 이용하여 분류 정확도로 나타낸다. 본 논문에서 제안하는 방법은 피험자 'aa', 'al', 'av', 'aw', 'ay'에 대하여 각각 $85.29{\pm}0.93%$, $95.43{\pm}0.57%$, $72.57{\pm}2.37%$, $91.82{\pm}1.38%$, $93.50{\pm}0.69%$의 분류 정확도를 보였다.