• Title/Summary/Keyword: least squares problem

Search Result 347, Processing Time 0.025 seconds

Parameter Estimation & Validation of Volume-delay Function based on Traffic Survey Data (교통조사를 통한 도로통행비용함수 구축 및 검증)

  • Kim, Ju-Yeong;Chu, Sang-Ho;Gang, Min-Gu;Heo, Heon
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.1
    • /
    • pp.115-124
    • /
    • 2010
  • VDF(volume-delay function) is one of the most important factor to improve the reliability of traffic demand estimation because it is for estimation of link travel time based on the traffic volume variation. Because VDF of link except for freeway is applied as the parameter of BPR(bureau of public road) of U.S., it causes to deteriorate the accuracy of traffic demand estimation. The purpose of this paper is to establish new parameter of VDF based on the real-surveyed traffic data in order to improve the problem of the existing VDF. We suggest the reclassification of road hierarchy, the approach of traffic survey, the estimating method of VDF parameter, and the improvements of new VDF application. The new VDF allows us to estimate more realistic traffic situation in parts of demand, travel time and path between origin-destination.

Application of Area Based Matching for the Automation of Interior Orientation (내부표정의 자동화를 위한 영역중심 영상정합기법 적용)

  • 유복모;염재홍;김원대
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.4
    • /
    • pp.321-330
    • /
    • 1999
  • Automation of observation and positioning of fiducial marks is made possible with the application of image matching technique, developed through the cooperative research effort of computer vision and digital photogrammetry. The major problem in such automation effort is to minimize the computing time and to increase the positional accuracy. Except for scanning and ground control surveying, the interior orientation process was automated in this study, through the development of an algorithm which applies the image matching and image processing techniques. The developed system was applied to close-range photogrammetry and the analysis of the results showed 54% improvement in processing time. For fiducial mark observation during interior orientation, the Laplacian of Gaussian transformation and the Hough transformation were applied to determine the accurate position of the center point, and the correlation matching and the least squares matching method were then applied to improve the accuracy of automated observation of fiducial marks. Image pyramid concept was applied to reduce the computing time of automated positioning of fiducial mark.

  • PDF

Modified Error Back Propagation Algorithm using the Approximating of the Hidden Nodes in Multi-Layer Perceptron (다층퍼셉트론의 은닉노드 근사화를 이용한 개선된 오류역전파 학습)

  • Kwak, Young-Tae;Lee, young-Gik;Kwon, Oh-Seok
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.9
    • /
    • pp.603-611
    • /
    • 2001
  • This paper proposes a novel fast layer-by-layer algorithm that has better generalization capability. In the proposed algorithm, the weights of the hidden layer are updated by the target vector of the hidden layer obtained by least squares method. The proposed algorithm improves the learning speed that can occur due to the small magnitude of the gradient vector in the hidden layer. This algorithm was tested in a handwritten digits recognition problem. The learning speed of the proposed algorithm was faster than those of error back propagation algorithm and modified error function algorithm, and similar to those of Ooyen's method and layer-by-layer algorithm. Moreover, the simulation results showed that the proposed algorithm had the best generalization capability among them regardless of the number of hidden nodes. The proposed algorithm has the advantages of the learning speed of layer-by-layer algorithm and the generalization capability of error back propagation algorithm and modified error function algorithm.

  • PDF

Image Denoising for Metal MRI Exploiting Sparsity and Low Rank Priors

  • Choi, Sangcheon;Park, Jun-Sik;Kim, Hahnsung;Park, Jaeseok
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.4
    • /
    • pp.215-223
    • /
    • 2016
  • Purpose: The management of metal-induced field inhomogeneities is one of the major concerns of distortion-free magnetic resonance images near metallic implants. The recently proposed method called "Slice Encoding for Metal Artifact Correction (SEMAC)" is an effective spin echo pulse sequence of magnetic resonance imaging (MRI) near metallic implants. However, as SEMAC uses the noisy resolved data elements, SEMAC images can have a major problem for improving the signal-to-noise ratio (SNR) without compromising the correction of metal artifacts. To address that issue, this paper presents a novel reconstruction technique for providing an improvement of the SNR in SEMAC images without sacrificing the correction of metal artifacts. Materials and Methods: Low-rank approximation in each coil image is first performed to suppress the noise in the slice direction, because the signal is highly correlated between SEMAC-encoded slices. Secondly, SEMAC images are reconstructed by the best linear unbiased estimator (BLUE), also known as Gauss-Markov or weighted least squares. Noise levels and correlation in the receiver channels are considered for the sake of SNR optimization. To this end, since distorted excitation profiles are sparse, $l_1$ minimization performs well in recovering the sparse distorted excitation profiles and the sparse modeling of our approach offers excellent correction of metal-induced distortions. Results: Three images reconstructed using SEMAC, SEMAC with the conventional two-step noise reduction, and the proposed image denoising for metal MRI exploiting sparsity and low rank approximation algorithm were compared. The proposed algorithm outperformed two methods and produced 119% SNR better than SEMAC and 89% SNR better than SEMAC with the conventional two-step noise reduction. Conclusion: We successfully demonstrated that the proposed, novel algorithm for SEMAC, if compared with conventional de-noising methods, substantially improves SNR and reduces artifacts.

A Study on Three-Dimensional Image Modeling and Visualization of Three-Dimensional Medical Image (삼차원 영상 모델링 및 삼차원 의료영상의 가시화에 관한 연구)

  • Lee, Kun;Gwun, Oubong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.3 no.2
    • /
    • pp.27-34
    • /
    • 1997
  • 3-D image modeling is in high demand for automated visual inspection and non-destructive testing. It also can be useful in biomedical research, medical therapy, surgery planning, and simulation of critical surgery (i.e. cranio-facial). Image processing and image analysis are used to enhance and classify medical volumetric data. Analyzing medical volumetric data is very difficult In this paper, we propose a new image modeling method based on tetrahedrization to improve the visualization of three-dimensional medical volumetric data. In this method, the trivariate piecewise linear interpolation is applied through the constructed tetrahedral domain. Also, visualization methods including iso-surface, color contouring, and slicing are discussed. This method can be useful to the correct and speedy analysis of medical volumetric data, because it doesn't have the ambiguity problem of Marching Cubes algorithm and achieves the data reduction. We expect to compensate the degradation of an accuracy by using an adaptive sub-division of tetrahedrization based on least squares fitting.

  • PDF

Water Hammer in the Pump Pipeline System with an Air Chamber (에어챔버가 설치된 가압펌프 계통에서의 수격현상)

  • Kim, Sang-Gyun;Lee, Kye-Bock
    • Journal of Energy Engineering
    • /
    • v.16 no.4
    • /
    • pp.187-193
    • /
    • 2007
  • Water hammer following the tripping of pumps can lead to overpressures and negative pressures. Reduction in overpressure and negative pressure may be necessary to avoid failure, to improve the efficiency of operation and to avoid fatigue of system components. The field tests on the water hammer have been conducted on the pump rising pipeline system with an air chamber. The hydraulic transient is modeled using the method of characteristics. Minimizing the least squares problem representing the difference between the measured and predicted transient response in the system performs the calibration of the simulation program. Among the input variables used in the water hammer analysis, the effects of the polytropic exponent, the discharge coefficient and the wave speed on the result of the numerical analysis were examined. The computer program developed in this study will be useful in designing the optimum parameters of an air chamber for the real pump pipeline system. The correct selection of air chamber size and the effects of related parameters to minimize water hammer have been investigated by both field measurements and numerical modeling.

Information extraction of the moving objects based on edge detection and optical flow (Edge 검출과 Optical flow 기반 이동물체의 정보 추출)

  • Chang, Min-Hyuk;Park, Jong-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.8A
    • /
    • pp.822-828
    • /
    • 2002
  • Optical flow estimation based on multi constraint approaches is frequently used for recognition of moving objects. However, the use have been confined because of OF estimation time as well as error problem. This paper shows a new method form effectively extracting movement information using the multi-constraint base approaches with sobel edge detection. The moving objects anr extraced in the input image sequence using edge detection and segmentation. Edge detection and difference of the two input image sequence gives us the moving objects in the images. The process of thresholding removes the moving objects detected due to noise. After thresholding the real moving objects, we applied the Combinatorial Hough Transform (CHT) and voting accumulation to find the optimal constraint lines for optical flow estimation. The moving objects found in the two consecutive images by using edge detection and segmentation greatly reduces the time for comutation of CHT. The voting based CHT avoids the errors associated with least squares methods. Calculation of a large number of points along the constraint line is also avoided by using the transformed slope-intercept parameter domain. The simulation results show that the proposed method is very effective for extracting optical flow vectors and hence recognizing moving objects in the images.

Antarctic DEMs Generation Using KOMPSAT-3A Stereo Images and Comparison by DEM Matching (KOMPSAT-3A 입체영상을 이용한 남극 DEM 제작과 DEM 매칭에 의한 두 시기의 DEM 비교)

  • Lee, Hyoseong;Hwang, Hobin;Seo, Doochun;Ahn, Kiweon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.3
    • /
    • pp.167-174
    • /
    • 2017
  • Antarctica, where ice sheet has been declined rapidly, should be monitored periodically. However, there are difficult to access for local survey or aircraft observation due to the vast and extreme environments of the polar regions. In order to overcome this problem, there have been a lot of studies by acquiring radar or laser data by satellite. It is also difficult to accurately measure the changes of the surface where is composed of snow or ice layer, and it is also difficult to product a high-resolution DEM. This study therefore aims to product DEMs of two periods using high-resolution KOMPSAT-3A stereo images, and DEM matching is implemented by the LZD(Least-squares Z-Differences) method to detect DEM changes in both periods. As a result, the proposed method could be suggested as comparing height differences of the two DEMs within 1m precision.

Study on Beamforming of Conformal Array Antenna Using Support Vector Regression (Support Vector Regression을 이용한 컨포멀 배열 안테나의 빔 형성 연구)

  • Lee, Kang-In;Jung, Sang-Hoon;Ryu, Hong-Kyun;Yoon, Young-Joong;Nam, Sang-Wook;Chung, Young-Seek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.11
    • /
    • pp.868-877
    • /
    • 2018
  • In this paper, we propose a new beamforming algorithm for a conformal array antenna based on support vector regression(SVR). While the conventional least squares method(LSM) considers all sample errors, SVR considers errors beyond the given error bound to obtain the optimum weight vector, which has a sparse solution and the advantage of the minimization of the overfitting problem. To verify the performance of the proposed algorithm, we apply SVR to the experimentally measured active element patterns of the conformal array antenna and obtain the weights for beamforming. In addition, we compare the beamforming results of SVR and LSM.

Fatigue wind load spectrum construction based on integration of turbulent wind model and measured data for long-span metal roof

  • Liman Yang;Cong Ye;Xu Yang;Xueyao Yang;Jian-ge Kou
    • Wind and Structures
    • /
    • v.36 no.2
    • /
    • pp.121-131
    • /
    • 2023
  • Aiming at the problem that fatigue characteristics of metal roof rely on local physical tests and lacks the cyclic load sequence matching with regional climate, this paper proposed a method of constructing the fatigue load spectrum based on integration of wind load model, measured data of long-span metal roof and climate statistical data. According to the turbulence characteristics of wind, the wind load model is established from the aspects of turbulence intensity, power spectral density and wind pressure coefficient. Considering the influence of roof configuration on wind pressure distribution, the parameters are modified through fusing the measured data with least squares method to approximate the actual wind pressure load of the roof system. Furthermore, with regards to the wind climate characteristics of building location, Weibull model is adopted to analyze the regional meteorological data to obtain the probability density distribution of wind velocity used for calculating wind load, so as to establish the cyclic wind load sequence with the attributes of regional climate and building configuration. Finally, taking a workshop's metal roof as an example, the wind load spectrum is constructed according to this method, and the fatigue simulation and residual life prediction are implemented based on the experimental data. The forecasting result is lightly higher than the design standards, consistent with general principles of its conservative safety design scale, which shows that the presented method is validated for the fatigue characteristics study and health assessment of metal roof.