• Title/Summary/Keyword: least squares problem

Search Result 347, Processing Time 0.028 seconds

Performance Analysis of the Robust Least Squares Target Localization Scheme using RDOA Measurements

  • Choi, Ka-Hyung;Ra, Won-Sang;Park, Jin-Bae;Yoon, Tae-Sung
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.606-614
    • /
    • 2012
  • A practical recursive linear robust estimation scheme is proposed for target localization in the sensor network which provides range difference of arrival (RDOA) measurements. In order to radically solve the known practical difficulties such as sensitivity for initial guess and heavy computational burden caused by intrinsic nonlinearity of the RDOA based target localization problem, an uncertain linear measurement model is newly derived. In the suggested problem setting, the target localization performance of the conventional linear estimation schemes might be severely degraded under the low SNR condition and be affected by the target position in the sensor network. This motivates us to devise a new sensor network localization algorithm within the framework of the recently developed robust least squares estimation theory. Provided that the statistical information regarding RDOA measurements are available, the estimate of the proposition method shows the convergence in probability to the true target position. Through the computer simulations, the omnidirectional target localization performance and consistency of the proposed algorithm are compared to those of the existing ones. It is shown that the proposed method is more reliable than the total least squares method and the linear correction least squares method.

FIR System Identification Method Using Collaboration Between RLS (Recursive Least Squares) and RTLS (Recursive Total Least Squares) (RLS (Recursive Least Squares)와 RTLS (Recursive Total Least Squares)의 결합을 이용한 새로운 FIR 시스템 인식 방법)

  • Lim, Jun-Seok;Pyeon, Yong-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.6
    • /
    • pp.374-380
    • /
    • 2010
  • It is known that the problem of FIR filtering with noisy input and output data can be solved by a total least squares (TLS) estimation. It is also known that the performance of the TLS estimation is very sensitive to the ratio between the variances of the input and output noises. In this paper, we propose a convex combination algorithm between the ordinary recursive LS based TLS (RTLS) and the ordinary recursive LS (RLS). This combined algorithm is robust to the noise variance ratio and has almost the same complexity as the RTLS. Simulation results show that the proposed algorithm performs near TLS in noise variance ratio ${\gamma}{\approx}1$ and that it outperforms TLS and LS in the rage of 2 < $\gamma$ < 20. Consequently, the practical workability of the TLS method applied to noisy data has been significantly broadened.

A Study on the ALS Method of System Identification (시스템동정의 ALS법에 관한 연구)

  • Lee, D.C.
    • Journal of Power System Engineering
    • /
    • v.7 no.1
    • /
    • pp.74-81
    • /
    • 2003
  • A system identification is to estimate the mathematical model on the base of input output data and to measure the output in the presence of adequate input for the controlled system. In the traditional system control field, most identification problems have been thought as estimating the unknown modeling parameters on the assumption that the model structures are fixed. In the system identification, it is possible to estimate the true parameter values by the adjusted least squares method in the input output case of no observed noise, and it is possible to estimate the true parameter values by the total least squares method in the input output case with the observed noise. We suggest the adjusted least squares method as a consistent estimation method in the system identification in the case where there is observed noise only in the output. In this paper the adjusted least squares method has been developed from the least squares method and the efficiency of the estimating results was confirmed by the generating data with the computer simulations.

  • PDF

Adaptive System Identification Using an Efficient Recursive Total Least Squares Algorithm

  • Choi, Nakjin;Lim, Jun-Seok;Song, Joon-Il;Sung, Koeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.3E
    • /
    • pp.93-100
    • /
    • 2003
  • We present a recursive total least squares (RTLS) algorithm for adaptive system identification. So far, recursive least squares (RLS) has been successfully applied in solving adaptive system identification problem. But, when input data contain additive noise, the results from RLS could be biased. Such biased results can be avoided by using the recursive total least squares (RTLS) algorithm. The RTLS algorithm described in this paper gives better performance than RLS algorithm over a wide range of SNRs and involves approximately the same computational complexity of O(N²).

PSEUDO-SPECTRAL LEAST-SQUARES METHOD FOR ELLIPTIC INTERFACE PROBLEMS

  • Shin, Byeong-Chun
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1291-1310
    • /
    • 2013
  • This paper develops least-squares pseudo-spectral collocation methods for elliptic boundary value problems having interface conditions given by discontinuous coefficients and singular source term. From the discontinuities of coefficients and singular source term, we derive the interface conditions and then we impose such interface conditions to solution spaces. We define two types of discrete least-squares functionals summing discontinuous spectral norms of the residual equations over two sub-domains. In this paper, we show that the homogeneous least-squares functionals are equivalent to appropriate product norms and the proposed methods have the spectral convergence. Finally, we present some numerical results to provide evidences for analysis and spectral convergence of the proposed methods.

Heat Transfer Analysis of Bi-Material Problem with Interfacial Boundary Using Moving Least Squares Finite Difference Method (이동최소제곱 유한차분법을 이용한 계면경계를 갖는 이종재료의 열전달문제 해석)

  • Yoon, Young-Cheol;Kim, Do-Wan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.779-787
    • /
    • 2007
  • This paper presents a highly efficient moving least squares finite difference method (MLS FDM) for a heat transfer problem of bi-material with interfacial boundary. The MLS FDM directly discretizes governing differential equations based on a node set without a grid structure. In the method, difference equations are constructed by the Taylor polynomial expanded by moving least squares method. The wedge function is designed on the concept of hyperplane function and is embedded in the derivative approximation formula on the moving least squares sense. Thus interfacial singular behavior like normal derivative jump is naturally modeled and the merit of MLS FDM in fast derivative computation is assured. Numerical experiments for heat transfer problem of bi-material with different heat conductivities show that the developed method achieves high efficiency as well as good accuracy in interface problems.

Least-squares Lattice Laguerre Smoother

  • Kim, Dong-Kyoo;Park, Poo-Gyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1189-1191
    • /
    • 2005
  • This paper introduces the least-squares order-recursive lattice (LSORL) Laguerre smoother that has order-recursive smoothing structure based on the Laguerre signal representation. The LSORL Laguerre smoother gives excellent performance for a channel equalization problem with smaller order of tap-weights than its counterpart algorithm based on the transversal filter structure. Simulation results show that the LSORL Laguerre smoother gives better performance than the LSORL transversal smoother.

  • PDF

CHARACTERIZATION OF THE SOLUTIONS SET OF INCONSISTENT LEAST-SQUARES PROBLEMS BY AN EXTENDED KACZMARZ ALGORITHM

  • Popa, Constantin
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.1
    • /
    • pp.51-64
    • /
    • 1999
  • We give a new characterization of the solutions set of the general (inconsistent) linear least-squares problem using the set of linit-points of an extended version of the classical Daczmarz's pro-jections method. We also obtain a "step error reduction formula" which in some cases can give us apriori information about the con-vergence properties of the algorithm. Some numerical experiments with our algorithm and comparisons between it and others existent in the literature are made in the last section of the paper.

A Study on the Least Squares Method in Stochastic Adaptive Controls (확률적응 제어에서의 최소자승법에 관한 연구)

  • Yang, Hai-Won
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.9
    • /
    • pp.372-376
    • /
    • 1984
  • This paper discusses on the stochastic adaprive control which uses a least squares method in the parameter adaptation law. Especially we study on the reason why existing methods have adopted modified least squares methods. After examining the performances of these methods for time-varying systems, we propose a new method to deal with such a situation, study on the stability problem, and finally show the effectiveness of the method with a computer simulation example.

  • PDF

A Method of Obtaning Least Squares Estimators of Estimable Functions in Classification Linear Models

  • Kim, Byung-Hwee;Chang, In-Hong;Dong, Kyung-Hwa
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.2
    • /
    • pp.183-193
    • /
    • 1999
  • In the problem of estimating estimable functions in classification linear models, we propose a method of obtaining least squares estimators of estimable functions. This method is based on the hierarchical Bayesian approach for estimating a vector of unknown parameters. Also, we verify that estimators obtained by our method are identical to least squares estimators of estimable functions obtained by using either generalized inverses or full rank reparametrization of the models. Some examples are given which illustrate our results.

  • PDF