• Title/Summary/Keyword: least squares estimation

Search Result 574, Processing Time 0.032 seconds

Hybrid Closed-Form Solution for Wireless Localization with Range Measurements (거리정보 기반 무선위치추정을 위한 혼합 폐쇄형 해)

  • Cho, Seong Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.7
    • /
    • pp.633-639
    • /
    • 2013
  • Several estimation methods used in the range measurement based wireless localization area have individual problems. These problems may not occur according to certain application areas. However, these problems may give rise to serious problems in particular applications. In this paper, three methods, ILS (Iterative Least Squares), DS (Direct Solution), and DSRM (Difference of Squared Range Measurements) methods are considered. Problems that can occur in these methods are defined and a simple hybrid solution is presented to solve them. The ILS method is the most frequently used method in wireless localization and has local minimum problems and a large computational burden compared with closed-form solutions. The DS method requires less processing time than the ILS method. However, a solution for this method may include a complex number caused by the relations between the location of reference nodes and range measurement errors. In the near-field region of the complex solution, large estimation errors occur. In the DSRM method, large measurement errors occur when the mobile node is far from the reference nodes due to the combination of range measurement error and range data. This creates the problem of large localization errors. In this paper, these problems are defined and a hybrid localization method is presented to avoid them by integrating the DS and DSRM methods. The defined problems are confirmed and the performance of the presented method is verified by a Monte-Carlo simulation.

Learning the Covariance Dynamics of a Large-Scale Environment for Informative Path Planning of Unmanned Aerial Vehicle Sensors

  • Park, Soo-Ho;Choi, Han-Lim;Roy, Nicholas;How, Jonathan P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.326-337
    • /
    • 2010
  • This work addresses problems regarding trajectory planning for unmanned aerial vehicle sensors. Such sensors are used for taking measurements of large nonlinear systems. The sensor investigations presented here entails methods for improving estimations and predictions of large nonlinear systems. Thoroughly understanding the global system state typically requires probabilistic state estimation. Thus, in order to meet this requirement, the goal is to find trajectories such that the measurements along each trajectory minimize the expected error of the predicted state of the system. The considerable nonlinearity of the dynamics governing these systems necessitates the use of computationally costly Monte-Carlo estimation techniques, which are needed to update the state distribution over time. This computational burden renders planning to be infeasible since the search process must calculate the covariance of the posterior state estimate for each candidate path. To resolve this challenge, this work proposes to replace the computationally intensive numerical prediction process with an approximate covariance dynamics model learned using a nonlinear time-series regression. The use of autoregressive time-series featuring a regularized least squares algorithm facilitates the learning of accurate and efficient parametric models. The learned covariance dynamics are demonstrated to outperform other approximation strategies, such as linearization and partial ensemble propagation, when used for trajectory optimization, in terms of accuracy and speed, with examples of simplified weather forecasting.

Collapse moment estimation for wall-thinned pipe bends and elbows using deep fuzzy neural networks

  • Yun, So Hun;Koo, Young Do;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2678-2685
    • /
    • 2020
  • The pipe bends and elbows in nuclear power plants (NPPs) are vulnerable to degradation mechanisms and can cause wall-thinning defects. As it is difficult to detect both the defects generated inside the wall-thinned pipes and the preliminary signs, the wall-thinning defects should be accurately estimated to maintain the integrity of NPPs. This paper proposes a deep fuzzy neural network (DFNN) method and estimates the collapse moment of wall-thinned pipe bends and elbows. The proposed model has a simplified structure in which the fuzzy neural network module is repeatedly connected, and it is optimized using the least squares method and genetic algorithm. Numerical data obtained through simulations on the pipe bends and elbows with extrados, intrados, and crown defects were applied to the DFNN model to estimate the collapse moment. The acquired databases were divided into training, optimization, and test datasets and used to train and verify the estimation model. Consequently, the relative root mean square (RMS) errors of the estimated collapse moment at all the defect locations were within 0.25% for the test data. Such a low RMS error indicates that the DFNN model is accurate in estimating the collapse moment for wall-thinned pipe bends and elbows.

TDOA Based Moving Target Velocity Estimation in Sensor Network (센서네트워크 내에서 TDOA 측정치 기반의 이동 표적 속도 정보 추정)

  • Kim, Yong Hwi;Park, Min Soo;Park, Jin Bae;Yoon, Tae Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.445-450
    • /
    • 2015
  • In the moving target problem, the velocity information of the moving target is very important as well as the high accuracy position information. To solve this problem, active researches are being conducted recently with combine the Time Difference of Arrival (TDOA) and Frequency Delay of Arrival(FDOA) measurements. However, since the FDOA measurement is utilizing the Doppler effect due to the relative velocity between the target source and the receiver sensor, it may be difficult to use the FDOA measurement if the moving target speed is not sufficiently fast. In this paper, we propose a method for estimating the position and the velocities of the target by using only the TDOA measurements for the low speed moving target in the indoor environment with sensor network. First, the target position and heading angle are obtained from the estimated positions of two attached transmitters on the target. Then, the target angular and linear velocities are also estimated. In addtion, we apply the Instrumental Variable (IV) technique to compensate the estimation error of the estimated target velocity. In simulation, the performance of the proposed algorithm is verified.

Input-Output Feedback Linearization of Sensorless IM Drives with Stator and Rotor Resistances Estimation

  • Hajian, Masood;Soltani, Jafar;Markadeh, Gholamreza Arab;Hosseinnia, Saeed
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.654-666
    • /
    • 2009
  • Direct torque control (DTC) of induction machines (IM) is a well-known strategy of these drives control which has a fast dynamic and a good tracking response. In this paper a nonlinear DTC of speed sensorless IM drives is presented which is based on input-output feedback linearization control theory. The IM model includes iron losses using a speed dependent shunt resistance which is determined through some effective experiments. A stator flux vector is estimated through a simple integrator based on stator voltage equations in the stationary frame. A novel method is introduced for DC offset compensation which is a major problem of AC machines, especially at low speeds. Rotor speed is also determined using a rotor flux sliding-mode (SM) observer which is capable of rotor flux space vector and rotor speed simultaneous estimation. In addition, stator and rotor resistances are estimated using a simple but effective recursive least squares (RLS) method combined with the so-called SM observer. The proposed control idea is experimentally implemented in real time using a FPGA board synchronized with a personal computer (PC). Simulation and experimental results are presented to show the capability and validity of the proposed control method.

An Improved Two-Terminal Numerical Algorithm of Fault Location Estimation and Arcing Fault Detection for Adaptive AutoReclosure (고속 적응자동재폐로를 위한 사고거리추정 및 사고판별에 관한 개선된 양단자 수치해석 알고리즘)

  • Lee, Chan-Joo;Kim, Hyun-Houng;Park, Jong-Bae;Shin, Joong-Rin;Radoievic, Zoran
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.11
    • /
    • pp.525-532
    • /
    • 2005
  • This paper presents a new two-terminal numerical algorithm for fault location estimation and for faults recognition using the synchronized phaser in time-domain. The proposed algorithm is also based on the synchronized voltage and current phasor measured from the assumed PMUs(Phasor Measurement Units) installed at both ends of the transmission lines. Also the arc voltage wave shape is modeled numerically on the basis of a great number of arc voltage records obtained by transient recorder. From the calculated arc voltage amplitude it can make a decision whether the fault is permanent or transient. In this paper the algorithm is given and estimated using DFT(discrete Fourier Transform) and the LES(Least Error Squares Method). The algorithm uses a very short data window and enables fast fault detection and classification for real-time transmission line protection. To test the validity of the proposed algorithm, the Electro-Magnetic Transient Program(EMTP/ATP) is used.

The Financing Decision, Investment Decision, and Profitability for Fisheries Corporations (어업의 자본조달결정, 투자결정과 경영성과)

  • 강석규
    • The Journal of Fisheries Business Administration
    • /
    • v.34 no.1
    • /
    • pp.31-44
    • /
    • 2003
  • The purpose of this study is to investigate empirically interaction among the financing decision, investment decision, and profitability by using 41 fisheries corporations in Korea, and to suggest implications of the empirical results for government's financial policy for fisheries corporations. Sample period is 19 years from 1982 till 2000. This analysis method employs the two stage least squares(2SLS) estimation method. From the results of regression analysis by 2SLS estimation method, the adjusted $R^2$ values were high and the overall F values indicated significant. The empirical results of this study are as follows; (1) determinant factors of capital structure model for fisheries are profitability, firm-size, fisheries investment of total asset, and business risk. As pecking order theory explains, the higher is profitability the lower is debt ratio. The larger firm-size, the higher is debt ratio. The higher is fisheries investment of total asset and business risk, the higher is debt ratio. (2) determinant factors of investment model for fisheries are the change of sales, business risk, and debt ratio. These factors have positive relation to fisheries investment of total asset (3) determinant factors of profitability model for fisheries are fisheries investment of total asset and debt ratio. These factors have negative relation to profitability. On the basis of analysis results, on the government's financial policy for fisheries corporations, I suggests that with interest rate reduction, the government should lend more funds to solve the crisis in the financial structure of the fisheries firms

  • PDF

Re-estimation of Model Parameters in Growth Curves When Adjusting Market Potential and Time of Maximum Sales (성장곡선 예측 모형의 특성치 보정에 따른 매개변수의 재추정)

  • Park, Ju-Seok;Ko, Young-Hyun;Jun, Chi-Hyuck;Lee, Jae-Hwan;Hong, Seung-Pyo;Moon, Hyung-Don
    • IE interfaces
    • /
    • v.16 no.1
    • /
    • pp.103-110
    • /
    • 2003
  • Growth curves are widely used in forecasting the market demand. When there are only a few data points available, the estimated model parameters have a low confidence. In this case, if some expert opinions are available, it would be better for predicting future demand to adjust the model parameters using these information. This paper proposes the methodology for re-estimation of model parameters in growth curves when adjusting market potential and/or time of maximum sales. We also provide the detailed procedures for five growth curves including Bass, Logistic, Gompertz, Weibull and Cumulative Lognormal models. Applications to real data are also included.

Precise Positioning of Autonomous Underwater Vehicle in Post-processing Mode

  • Felski, Andrzej
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.513-517
    • /
    • 2006
  • Autonomous Underwater Vehicles plays specific role in underwater investigation. Generally, this kind of vehicles will move along a planned path for sea bottom or underwater installations inspections, search for mineral deposits along shelves, seeking lost items including bottom mines or for hydrographic measurements. A crucial barrier for it remains the possibility of precise determination of their underwater position. Commonly used radionavigation systems do not work in such circumstances or do not guarantee the required accuracies. In the paper some new solution is proposed on the assumption that it is possible to increase the precision by certain processing of a combination of measurements conducted by means of different techniques. Objective of the paper is the idea of navigation of AUV which consists of two phases: firstly a trip of AUV along pre-planned route and after that postprocessed transformation of collected data in post-processing mode. During the processing of collected data the modern adjustment methods have been applied, mainly estimation by means of least squares and M-estimation. Application of these methods should be associated with the measuring and geometric conditions of navigational tasks and thus suited for specific scientific and technical problems of underwater navigation. The first results of computer aided investigation will be presented and the basic scope of these application and possible development directions will be indicated also. The paper is prepared as an partial results of the works carried out within a framework of the research Project: 'Improvement of the Precise Underwater Vehicle Navigation Methods' financed by the Polish Ministry of Education and Science (No 0 T00A 012 25).

  • PDF

Estimation and Elimination of ECG Artifacts from Single Channel Scalp EEG (단일 채널 두피 뇌전도에서의 심전도 잡음 추정 및 제거)

  • Cho, Sung-Pil;Song, Mi-Hye;Park, Ho-Dong;Lee, Kyoung-Joung;Park, Young-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1910-1911
    • /
    • 2007
  • A new method for estimating and eliminating electrocardiogram (ECG) artifacts from single channel scalp electroencephalogram (EEG) is proposed. The proposed method consists of emphasis of QRS complex from EEG using least squares acceleration (LSA) filter, generation of synchronized pulse with R-peak and ECG artifacts estimation and elimination using adaptive filter. The performance of the proposed method was evaluated using simulated and real EEG recordings, we found that the ECG artifacts were successfully estimated and eliminated in comparison with the conventional multi-channel techniques, which are independent component analysis (ICA) and ensemble average (EA) method. In conclusion, we can conclude that the proposed method is useful for the detecting and eliminating the ECG artifacts from single channel EEG and simple to use for ambulatory/portable EEG monitoring system.

  • PDF