• Title/Summary/Keyword: learning time and environment management

Search Result 189, Processing Time 0.026 seconds

A Qualitative Study on Men's Experiences of Work-Life Balance: Focusing on Men in Dual-Income Families with Children under the Age of Six (육아기 맞벌이 남성의 일·가정 양립 경험)

  • Chae, Hwa Young;Lee, Ki Young
    • Human Ecology Research
    • /
    • v.51 no.5
    • /
    • pp.497-511
    • /
    • 2013
  • This study aimed to examine Korean men's experiences of work-family balance in dual income families with children under six years of age. We focused on identifying the difficulty of balancing work and family considering their individual, social, and cultural conditions. The method was a qualitative study involving two in-depth interviews with each of 12 men, and analyzing the data through the grounded theory approach. From the results, a model of men's work-family experience was constructed. It demonstrates the central phenomena (difficulties of balancing), the causal conditions (lacking time for family, seeking support from the employer, and learning husband's roles insufficiently), the contextual conditions (remaining paternalism and changing husband's roles), the intervening conditions (workplace, childcare support, and wife characteristics), and strategies (help from relatives, utilizing daycare centers, controlling birth, managing work conditions, and using family polices). We clarify the overall picture of working and family life experiences, and also show how men deal with their problems in their circumstances by balancing working and family life. In conclusion, males have difficulty participating in family life autonomously because of having less decision-making power than the wife. Moreover, the great responsibilities of the breadwinner disturb the work-family balance. Men devote themselves to working to hold a job instead of spending time with their family. However, they ultimately value work-family balance with respect to 'keeping a peaceful family life'.

A study on development methodology of web-based business simulation game (웹 기반의 경영시뮬레이션 게임 개발 방법론)

  • Kim, Hyung-Sub
    • Journal of Digital Convergence
    • /
    • v.15 no.1
    • /
    • pp.53-60
    • /
    • 2017
  • The time of digital era and the increasing complexity of the management environment have raised uncertainties about the future. Companies have made steady investments in education as a way to prepare for the future. In this study, design and development methodology based on web - based management simulation games (manufacturing, distribution, finance) which author participated in development was presented. The development methodology presented in this study can be roughly divided into business simulation game design methodology and business simulation game development methodology. Since there is no existing research methodology for development methodology, development model is presented based on empirical based on development case. In this paper, we propose an overall content development methodology and propose a detailed methodology of the content.

Consideration of the Correlation between Declining Academic Ability and COVID-19 - through Analysis of National Level Academic Achievement (국가수준 학업성취도 분석을 통한 학력 저하와 코로나19와의 상관관계에 대한 고찰)

  • Saesoon Lee;Jin-Woo Park
    • Journal of Science Education
    • /
    • v.47 no.3
    • /
    • pp.251-262
    • /
    • 2023
  • In this study, we examine other factors that may contribute to the decline in students' academic performance and educational attainment. Many media reports, as well as previous studies, have suggested that virtual learning is the main reason for the decline in students' academic performance. However, the 2020 National Student Achievement Survey, which was conducted in conjunction with the COVID-19 Distance Learning Environment Student Survey, showed that students were highly satisfied with distance learning (70-80%), and the analysis of the National Assessment of Educational Achievement showed that students' academic performance had already been declining year by year since 2017, with a general downward curve. For further confirmation, we analyzed the performance of high school students on mock exams and found that their performance was not normally distributed, but rather a right-skewed U-shaped distribution with a shrinking number of medians and severe polarization. We found that this phenomenon is not simply because of the mode or quality of the virtual classroom, but to a variety of factors, including environmental influences such as care and management at home, changes in investment in private education, increased time spent on online devices while taking virtual classes at the bottom, and increased time spent watching online content, games, and videos that are not related to learning.

AIoT-based High-risk Industrial Safety Management System of Artificial Intelligence (AIoT 기반 고위험 산업안전관리시스템 인공지능 연구)

  • Yeo, Seong-koo;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.168-170
    • /
    • 2022
  • The government enacted and promulgated the 'Severe Accident Punishment Act' in January 2021, and is enforcing the law for workplaces with 50 or more full-time workers. However, the number of industrial accident accidents in 2021 increased by 10.7% compared to the same period of the previous year, and chemical gas Safety accidents due to leaks and explosions also occur frequently. Therefore, in high-risk industrial sites, comprehensive Safety measures are urgently needed. In this study, BLE Mesh networking in industrial sites with poor communication environment apply technology. The complex sensor AIoT device recognizes a dangerous situation as a gas sensing value, voice, and motion value, and transmits it to the server. The server monitors the risk situation in real time through information value analysis and judgment through artificial intelligence LSTM algorithm and CNN algorithm for AIoT transmission information. Through this study, through the development of AIoT devices capable of gas sensing, voice and motion recognition, and AI-applied safety management systems, It will contribute to the expansion of the social safety net by expanding its application.

  • PDF

Study on the Mathematics Teaching and Learning Artificial Intelligence Platform Analysis (수학 교수·학습을 위한 인공지능 플랫폼 분석 연구)

  • Park, Hye Yeon;Son, Bok Eun;Ko, Ho Kyoung
    • Communications of Mathematical Education
    • /
    • v.36 no.1
    • /
    • pp.1-21
    • /
    • 2022
  • The purpose of this study is to analyze the current situation of EduTech, which is proposed as a way to build a flexible learning environment regardless of time and place according to the use of digital technology in mathematics subjects. The process of designing classes to use the EduTech platform, which is still in the development introduction stage, in public education is still difficult, and research to observe its effects and characteristics is also in its early stages. However, in the stage of preparing for future education, it is a meaningful process to grasp the current situation and point out the direction in preparation for the future in which EduTech will be actively applied to education. Accordingly, the current situation and utilization trends of EduTech at home and abroad were confirmed, and the functions and roles of EduTech platforms used in mathematics were analyzed. As a result of the analysis, the EduTech platform was pursuing learners' self-directed learning by constructing its functions so that they could be useful for individual learning of learners in hierarchical mathematics education. In addition, we have confirmed that the platform is evolving to be useful for teachers' work reduction, suitable activities, and evaluations learning management. Therefore, it is necessary to implement instructional design and individual customized learning support measures for students that can efficiently utilize these platforms in the future.

Human Tracking Technology using Convolutional Neural Network in Visual Surveillance (서베일런스에서 회선 신경망 기술을 이용한 사람 추적 기법)

  • Kang, Sung-Kwan;Chun, Sang-Hun
    • Journal of Digital Convergence
    • /
    • v.15 no.2
    • /
    • pp.173-181
    • /
    • 2017
  • In this paper, we have studied tracking as a training stage of considering the position and the scale of a person given its previous position, scale, as well as next and forward image fraction. Unlike other learning methods, CNN is thereby learning combines both time and spatial features from the image for the two consecutive frames. We introduce multiple path ways in CNN to better fuse local and global information. A creative shift-variant CNN architecture is designed so as to alleviate the drift problem when the distracting objects are similar to the target in cluttered environment. Furthermore, we employ CNNs to estimate the scale through the accurate localization of some key points. These techniques are object-independent so that the proposed method can be applied to track other types of object. The capability of the tracker of handling complex situations is demonstrated in many testing sequences. The accuracy of the SVM classifier using the features learnt by the CNN is equivalent to the accuracy of the CNN. This fact confirms the importance of automatically optimized features. However, the computation time for the classification of a person using the convolutional neural network classifier is less than approximately 1/40 of the SVM computation time, regardless of the type of the used features.

A Multi-chiller Operation Model Based on Deep Reinforcement Learning Considering Minimum Up-time Constraint (최소가동시간 제약을 고려한 심층 강화학습 기반의 다중 냉동기 운영 모델)

  • Jongeun Kim;Khanho Kim;Jae-Gon Kim
    • The Journal of Bigdata
    • /
    • v.9 no.1
    • /
    • pp.153-168
    • /
    • 2024
  • In summer, as chillers are considered the main energy consumer of building, the efficient chiller operation is considered important. However, it is difficult to operate chillers to meet the cooling demand of the building as the demand fluctuates with various factors like the internal, external environment and behavior of the occupants and as chiller's constraint cause the current operation constrains operation in future. To address these problems, this study proposes a multi-chiller operation model based on deep reinforcement learning considering the minimum up-time of the chiller. The proposed model learns the value of the chiller operations according to the state composed of metrological and cooling system information and determines operation that minimizes the difference between the supply load and the cooling demand among feasible operations. The practical applicability was improved by applying the training algorithm considering the minimum up-time constraint and Experiments results using the actual data from a Korean university confirmed that the proposed model complies with the chiller constraints and outperforms the existing chiller operation logic of the university in terms of differences from the building cooling demand.

Application of Artificial Intelligence Technology for Dam-Reservoir Operation in Long-Term Solution to Flood and Drought in Upper Mun River Basin

  • Areeya Rittima;JidapaKraisangka;WudhichartSawangphol;YutthanaPhankamolsil;Allan Sriratana Tabucanon;YutthanaTalaluxmana;VarawootVudhivanich
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.30-30
    • /
    • 2023
  • This study aims to establish the multi-reservoir operation system model in the Upper Mun River Basin which includes 5 main dams namely, Mun Bon (MB), Lamchae (LC), Lam Takhong (LTK), Lam Phraphoeng (LPP), and Lower Lam Chiengkrai (LLCK) Dams. The knowledge and AI technology were applied aiming to develop innovative prototype for SMART dam-reservoir operation in future. Two different sorts of reservoir operation system model namely, Fuzzy Logic (FL) and Constraint Programming (CP) as well as the development of rainfall and reservoir inflow prediction models using Machine Learning (ML) technique were made to help specify the right amount of daily reservoir releases for the Royal Irrigation Department (RID). The model could also provide the essential information particularly for the Office of National Water Resource of Thailand (ONWR) to determine the short-term and long-term water resource management plan and strengthen water security against flood and drought in this region. The simulated results of base case scenario for reservoir operation in the Upper Mun from 2008 to 2021 indicated that in the same circumstances, FL and CP models could specify the new release schemes to increase the reservoir water storages at the beginning of dry season of approximately 125.25 and 142.20 MCM per year. This means that supplying the agricultural water to farmers in dry season could be well managed. In other words, water scarcity problem could substantially be moderated at some extent in case of incapability to control the expansion of cultivated area size properly. Moreover, using AI technology to determine the new reservoir release schemes plays important role in reducing the actual volume of water shortfall in the basin although the drought situation at LTK and LLCK Dams were still existed in some periods of time. Meanwhile, considering the predicted inflow and hydrologic factors downstream of 5 main dams by FL model and minimizing the flood volume by CP model could ensure that flood risk was considerably minimized as a result of new release schemes.

  • PDF

Threatening privacy by identifying appliances and the pattern of the usage from electric signal data (스마트 기기 환경에서 전력 신호 분석을 통한 프라이버시 침해 위협)

  • Cho, Jae yeon;Yoon, Ji Won
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.5
    • /
    • pp.1001-1009
    • /
    • 2015
  • In Smart Grid, smart meter sends our electric signal data to the main server of power supply in real-time. However, the more efficient the management of power loads become, the more likely the user's pattern of usage leaks. This paper points out the threat of privacy and the need of security measures in smart device environment by showing that it's possible to identify the appliances and the specific usage patterns of users from the smart meter's data. Learning algorithm PCA is used to reduce the dimension of the feature space and k-NN Classifier to infer appliances and states of them. Accuracy is validated with 10-fold Cross Validation.

Biometrics System Technology Trends Based on Biosignal (생체신호 기반 바이오인식 시스템 기술 동향)

  • Choi, Gyu-Ho;Moon, Hae-Min;Pan, Sung-Bum
    • Journal of Digital Convergence
    • /
    • v.15 no.1
    • /
    • pp.381-391
    • /
    • 2017
  • Biometric technology is a technology for authenticating a user using the physical or behavioral features of the inherent characteristics of the individual. With the necessity and efficiency of the technology in the fields of finance, security, access control, medical welfare, inspection, and entertainment, the service range has been expanding. Biometrics using biometric information such as fingerprints and faces have been exposed to counterfeit and disguised threats and become a social problem. Recent studies using a bio-signal from the inside of the body other than the bio-information of the external body are being developed. This paper analyzes the recent research and technology of biometric systems using bio-signals, ECG, heart sounds, EEG, and EMG to present the skills needed for the development direction. In the future, utilizing the deep learning to build and analyze database to manage bio-signal based big data for the complex condition of individuals, biometrics technologies suitable for real time environment are expected to be researched.