• Title/Summary/Keyword: learning technology

Search Result 8,128, Processing Time 0.033 seconds

Analysis of Rice Blast Outbreaks in Korea through Text Mining (텍스트 마이닝을 통한 우리나라의 벼 도열병 발생 개황 분석)

  • Song, Sungmin;Chung, Hyunjung;Kim, Kwang-Hyung;Kim, Ki-Tae
    • Research in Plant Disease
    • /
    • v.28 no.3
    • /
    • pp.113-121
    • /
    • 2022
  • Rice blast is a major plant disease that occurs worldwide and significantly reduces rice yields. Rice blast disease occurs periodically in Korea, causing significant socio-economic damage due to the unique status of rice as a major staple crop. A disease outbreak prediction system is required for preventing rice blast disease. Epidemiological investigations of disease outbreaks can aid in decision-making for plant disease management. Currently, plant disease prediction and epidemiological investigations are mainly based on quantitatively measurable, structured data such as crop growth and damage, weather, and other environmental factors. On the other hand, text data related to the occurrence of plant diseases are accumulated along with the structured data. However, epidemiological investigations using these unstructured data have not been conducted. The useful information extracted using unstructured data can be used for more effective plant disease management. This study analyzed news articles related to the rice blast disease through text mining to investigate the years and provinces where rice blast disease occurred most in Korea. Moreover, the average temperature, total precipitation, sunshine hours, and supplied rice varieties in the regions were also analyzed. Through these data, it was estimated that the primary causes of the nationwide outbreak in 2020 and the major outbreak in Jeonbuk region in 2021 were meteorological factors. These results obtained through text mining can be combined with deep learning technology to be used as a tool to investigate the epidemiology of rice blast disease in the future.

Exploring Changes in Science PCK Characteristics through a Family Resemblance Approach (가족유사성 접근을 통한 과학 PCK 변화 탐색)

  • Kwak, Youngsun
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.15 no.2
    • /
    • pp.235-248
    • /
    • 2022
  • With the changes in the future educational environment, such as the rapid decline of the school-age population and the expansion of students' choice of curriculum, changes are also required in PCK, the expertise of science teachers. In other words, the categories constituting the existing 'consensus-PCK' and the characteristics of 'science PCK' are not fixed, so more categories and characteristics can be added. The purpose of this study is to explore the potential area of science PCK required to cope with changes in the future educational environment in the form of 'Family Resemblance Science PCK (Family Resemblance-PCK, hereafter)' through Wittgenstein's family resemblance approach. For this purpose, in-depth interviews were conducted with three focus groups. In the focus group in-depth interview, participants discussed how the science PCK required for science teachers in future schools in 2030-2045 will change due to changes in the future society and educational environment. Qualitative analysis was performed based on the in-depth interview, and semantic network analysis was performed on the in-depth interview text to analyze the characteristics of 'Family Resemblance-PCK' differentiated from the existing 'consensus-PCK'. In results, the characteristics of Family Resemblance-PCK, which are newly requested along with changes in role expectations of science teachers, were examined by PCK area. As a result of semantic network analysis of Family Resemblance-PCK, it was found that Family Resemblance-PCK expands its boundaries from the existing consensus-PCK, which is the starting point, and new PCK elements were added. Looking at the aspects of Family Resemblance-PCK, [AI-Convergence Knowledge-Contents-Digital], [Community-Network-Human Resources-Relationships], [Technology-Exploration-Virtual Reality-Research], [Self-Directed Learning-Collaboration-Community], etc., form a distinct network cluster, and it is expected that future science teacher expertise will be formed and strengthened around these PCK areas. Based on the research results, changes in the professionalism of science teachers in future schools and countermeasures were proposed as a conclusion.

A study on improving the accuracy of machine learning models through the use of non-financial information in predicting the Closure of operator using electronic payment service (전자결제서비스 이용 사업자 폐업 예측에서 비재무정보 활용을 통한 머신러닝 모델의 정확도 향상에 관한 연구)

  • Hyunjeong Gong;Eugene Hwang;Sunghyuk Park
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.361-381
    • /
    • 2023
  • Research on corporate bankruptcy prediction has been focused on financial information. Since the company's financial information is updated quarterly, there is a problem that timeliness is insufficient in predicting the possibility of a company's business closure in real time. Evaluated companies that want to improve this need a method of judging the soundness of a company that uses information other than financial information to judge the soundness of a target company. To this end, as information technology has made it easier to collect non-financial information about companies, research has been conducted to apply additional variables and various methodologies other than financial information to predict corporate bankruptcy. It has become an important research task to determine whether it has an effect. In this study, we examined the impact of electronic payment-related information, which constitutes non-financial information, when predicting the closure of business operators using electronic payment service and examined the difference in closure prediction accuracy according to the combination of financial and non-financial information. Specifically, three research models consisting of a financial information model, a non-financial information model, and a combined model were designed, and the closure prediction accuracy was confirmed with six algorithms including the Multi Layer Perceptron (MLP) algorithm. The model combining financial and non-financial information showed the highest prediction accuracy, followed by the non-financial information model and the financial information model in order. As for the prediction accuracy of business closure by algorithm, XGBoost showed the highest prediction accuracy among the six algorithms. As a result of examining the relative importance of a total of 87 variables used to predict business closure, it was confirmed that more than 70% of the top 20 variables that had a significant impact on the prediction of business closure were non-financial information. Through this, it was confirmed that electronic payment-related information of non-financial information is an important variable in predicting business closure, and the possibility of using non-financial information as an alternative to financial information was also examined. Based on this study, the importance of collecting and utilizing non-financial information as information that can predict business closure is recognized, and a plan to utilize it for corporate decision-making is also proposed.

Seeking for a Curriculum of Dance Department in the University in the Age of the 4th Industrial Revolution (4차 산업혁명시대 대학무용학과 커리큘럼의 방향모색)

  • Baek, Hyun-Soon;Yoo, Ji-Young
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.3
    • /
    • pp.193-202
    • /
    • 2019
  • This study focuses on what changes are required as to a curriculum of dance department in the university in the age of the 4th industrial revolution. By comparing and analyzing the curricula of dance department in the five universities in Seoul, five academic subjects as to curricula of dance department, which covers what to learn for dance education in the age of the 4th industrial revolution, are presented. First, dance integrative education, the integration of creativity and science education, can be referred to as a subject that stimulates ideas and creativity and raises artistic sensitivity based on STEAM. Second, the curriculum characterized by prediction of the future prospect through Big Data can be utilized well in dealing with dance performance, career path of dance-majoring people, and job creation by analyzing public opinion, evaluation, and feelings. Third, video education. Seeing the images as modern major media tends to occupy most of the expressive area of art, dance by dint of video enables existing dance work to be created as new form of art, expanding dance boundaries in academic and performing art viewpoint. Fourth, VR and AR are essential techniques in the era of smart media. Whether upcoming dance studies are in the form of performance or education or industry, for VR and AR to be digitally applied into every relevant field, keeping with the time, learning about VR and AR is indispensable. Last, the 4th industrial revolution and the curriculum of dance art are needed to foresee the changes in the 4th industrial revolution and to educate changes, development and seeking in dance curriculum.

Comparative study of flood detection methodologies using Sentinel-1 satellite imagery (Sentinel-1 위성 영상을 활용한 침수 탐지 기법 방법론 비교 연구)

  • Lee, Sungwoo;Kim, Wanyub;Lee, Seulchan;Jeong, Hagyu;Park, Jongsoo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.181-193
    • /
    • 2024
  • The increasing atmospheric imbalance caused by climate change leads to an elevation in precipitation, resulting in a heightened frequency of flooding. Consequently, there is a growing need for technology to detect and monitor these occurrences, especially as the frequency of flooding events rises. To minimize flood damage, continuous monitoring is essential, and flood areas can be detected by the Synthetic Aperture Radar (SAR) imagery, which is not affected by climate conditions. The observed data undergoes a preprocessing step, utilizing a median filter to reduce noise. Classification techniques were employed to classify water bodies and non-water bodies, with the aim of evaluating the effectiveness of each method in flood detection. In this study, the Otsu method and Support Vector Machine (SVM) technique were utilized for the classification of water bodies and non-water bodies. The overall performance of the models was assessed using a Confusion Matrix. The suitability of flood detection was evaluated by comparing the Otsu method, an optimal threshold-based classifier, with SVM, a machine learning technique that minimizes misclassifications through training. The Otsu method demonstrated suitability in delineating boundaries between water and non-water bodies but exhibited a higher rate of misclassifications due to the influence of mixed substances. Conversely, the use of SVM resulted in a lower false positive rate and proved less sensitive to mixed substances. Consequently, SVM exhibited higher accuracy under conditions excluding flooding. While the Otsu method showed slightly higher accuracy in flood conditions compared to SVM, the difference in accuracy was less than 5% (Otsu: 0.93, SVM: 0.90). However, in pre-flooding and post-flooding conditions, the accuracy difference was more than 15%, indicating that SVM is more suitable for water body and flood detection (Otsu: 0.77, SVM: 0.92). Based on the findings of this study, it is anticipated that more accurate detection of water bodies and floods could contribute to minimizing flood-related damages and losses.

Construction of Event Networks from Large News Data Using Text Mining Techniques (텍스트 마이닝 기법을 적용한 뉴스 데이터에서의 사건 네트워크 구축)

  • Lee, Minchul;Kim, Hea-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.183-203
    • /
    • 2018
  • News articles are the most suitable medium for examining the events occurring at home and abroad. Especially, as the development of information and communication technology has brought various kinds of online news media, the news about the events occurring in society has increased greatly. So automatically summarizing key events from massive amounts of news data will help users to look at many of the events at a glance. In addition, if we build and provide an event network based on the relevance of events, it will be able to greatly help the reader in understanding the current events. In this study, we propose a method for extracting event networks from large news text data. To this end, we first collected Korean political and social articles from March 2016 to March 2017, and integrated the synonyms by leaving only meaningful words through preprocessing using NPMI and Word2Vec. Latent Dirichlet allocation (LDA) topic modeling was used to calculate the subject distribution by date and to find the peak of the subject distribution and to detect the event. A total of 32 topics were extracted from the topic modeling, and the point of occurrence of the event was deduced by looking at the point at which each subject distribution surged. As a result, a total of 85 events were detected, but the final 16 events were filtered and presented using the Gaussian smoothing technique. We also calculated the relevance score between events detected to construct the event network. Using the cosine coefficient between the co-occurred events, we calculated the relevance between the events and connected the events to construct the event network. Finally, we set up the event network by setting each event to each vertex and the relevance score between events to the vertices connecting the vertices. The event network constructed in our methods helped us to sort out major events in the political and social fields in Korea that occurred in the last one year in chronological order and at the same time identify which events are related to certain events. Our approach differs from existing event detection methods in that LDA topic modeling makes it possible to easily analyze large amounts of data and to identify the relevance of events that were difficult to detect in existing event detection. We applied various text mining techniques and Word2vec technique in the text preprocessing to improve the accuracy of the extraction of proper nouns and synthetic nouns, which have been difficult in analyzing existing Korean texts, can be found. In this study, the detection and network configuration techniques of the event have the following advantages in practical application. First, LDA topic modeling, which is unsupervised learning, can easily analyze subject and topic words and distribution from huge amount of data. Also, by using the date information of the collected news articles, it is possible to express the distribution by topic in a time series. Second, we can find out the connection of events in the form of present and summarized form by calculating relevance score and constructing event network by using simultaneous occurrence of topics that are difficult to grasp in existing event detection. It can be seen from the fact that the inter-event relevance-based event network proposed in this study was actually constructed in order of occurrence time. It is also possible to identify what happened as a starting point for a series of events through the event network. The limitation of this study is that the characteristics of LDA topic modeling have different results according to the initial parameters and the number of subjects, and the subject and event name of the analysis result should be given by the subjective judgment of the researcher. Also, since each topic is assumed to be exclusive and independent, it does not take into account the relevance between themes. Subsequent studies need to calculate the relevance between events that are not covered in this study or those that belong to the same subject.

Retail Product Development and Brand Management Collaboration between Industry and University Student Teams (산업여대학학생단대지간적령수산품개발화품패관리협작(产业与大学学生团队之间的零售产品开发和品牌管理协作))

  • Carroll, Katherine Emma
    • Journal of Global Scholars of Marketing Science
    • /
    • v.20 no.3
    • /
    • pp.239-248
    • /
    • 2010
  • This paper describes a collaborative project between academia and industry which focused on improving the marketing and product development strategies for two private label apparel brands of a large regional department store chain in the southeastern United States. The goal of the project was to revitalize product lines of the two brands by incorporating student ideas for new solutions, thereby giving the students practical experience with a real-life industry situation. There were a number of key players involved in the project. A privately-owned department store chain based in the southeastern United States which was seeking an academic partner had recognized a need to update two existing private label brands. They targeted middle-aged consumers looking for casual, moderately priced merchandise. The company was seeking to change direction with both packaging and presentation, and possibly product design. The branding and product development divisions of the company contacted professors in an academic department of a large southeastern state university. Two of the professors agreed that the task would be a good fit for their classes - one was a junior-level Intermediate Brand Management class; the other was a senior-level Fashion Product Development class. The professors felt that by working collaboratively on the project, students would be exposed to a real world scenario, within the security of an academic learning environment. Collaboration within an interdisciplinary team has the advantage of providing experiences and resources beyond the capabilities of a single student and adds "brainpower" to problem-solving processes (Lowman 2000). This goal of improving the capabilities of students directed the instructors in each class to form interdisciplinary teams between the Branding and Product Development classes. In addition, many universities are employing industry partnerships in research and teaching, where collaboration within temporal (semester) and physical (classroom/lab) constraints help to increase students' knowledge and experience of a real-world situation. At the University of Tennessee, the Center of Industrial Services and UT-Knoxville's College of Engineering worked with a company to develop design improvements in its U.S. operations. In this study, Because should be lower case b with a private label retail brand, Wickett, Gaskill and Damhorst's (1999) revised Retail Apparel Product Development Model was used by the product development and brand management teams. This framework was chosen because it addresses apparel product development from the concept to the retail stage. Two classes were involved in this project: a junior level Brand Management class and a senior level Fashion Product Development class. Seven teams were formed which included four students from Brand Management and two students from Product Development. The classes were taught the same semester, but not at the same time. At the beginning of the semester, each class was introduced to the industry partner and given the problem. Half the teams were assigned to the men's brand and half to the women's brand. The teams were responsible for devising approaches to the problem, formulating a timeline for their work, staying in touch with industry representatives and making sure that each member of the team contributed in a positive way. The objective for the teams was to plan, develop, and present a product line using merchandising processes (following the Wickett, Gaskill and Damhorst model) and develop new branding strategies for the proposed lines. The teams performed trend, color, fabrication and target market research; developed sketches for a line; edited the sketches and presented their line plans; wrote specifications; fitted prototypes on fit models, and developed final production samples for presentation to industry. The branding students developed a SWOT analysis, a Brand Measurement report, a mind-map for the brands and a fully integrated Marketing Report which was presented alongside the ideas for the new lines. In future if the opportunity arises to work in this collaborative way with an existing company who wishes to look both at branding and product development strategies, classes will be scheduled at the same time so that students have more time to meet and discuss timelines and assigned tasks. As it was, student groups had to meet outside of each class time and this proved to be a challenging though not uncommon part of teamwork (Pfaff and Huddleston, 2003). Although the logistics of this exercise were time-consuming to set up and administer, professors felt that the benefits to students were multiple. The most important benefit, according to student feedback from both classes, was the opportunity to work with industry professionals, follow their process, and see the results of their work evaluated by the people who made the decisions at the company level. Faculty members were grateful to have a "real-world" case to work with in the classroom to provide focus. Creative ideas and strategies were traded as plans were made, extending and strengthening the departmental links be tween the branding and product development areas. By working not only with students coming from a different knowledge base, but also having to keep in contact with the industry partner and follow the framework and timeline of industry practice, student teams were challenged to produce excellent and innovative work under new circumstances. Working on the product development and branding for "real-life" brands that are struggling gave students an opportunity to see how closely their coursework ties in with the real-world and how creativity, collaboration and flexibility are necessary components of both the design and business aspects of company operations. Industry personnel were impressed by (a) the level and depth of knowledge and execution in the student projects, and (b) the creativity of new ideas for the brands.

A Study on the Application of Outlier Analysis for Fraud Detection: Focused on Transactions of Auction Exception Agricultural Products (부정 탐지를 위한 이상치 분석 활용방안 연구 : 농수산 상장예외품목 거래를 대상으로)

  • Kim, Dongsung;Kim, Kitae;Kim, Jongwoo;Park, Steve
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.3
    • /
    • pp.93-108
    • /
    • 2014
  • To support business decision making, interests and efforts to analyze and use transaction data in different perspectives are increasing. Such efforts are not only limited to customer management or marketing, but also used for monitoring and detecting fraud transactions. Fraud transactions are evolving into various patterns by taking advantage of information technology. To reflect the evolution of fraud transactions, there are many efforts on fraud detection methods and advanced application systems in order to improve the accuracy and ease of fraud detection. As a case of fraud detection, this study aims to provide effective fraud detection methods for auction exception agricultural products in the largest Korean agricultural wholesale market. Auction exception products policy exists to complement auction-based trades in agricultural wholesale market. That is, most trades on agricultural products are performed by auction; however, specific products are assigned as auction exception products when total volumes of products are relatively small, the number of wholesalers is small, or there are difficulties for wholesalers to purchase the products. However, auction exception products policy makes several problems on fairness and transparency of transaction, which requires help of fraud detection. In this study, to generate fraud detection rules, real huge agricultural products trade transaction data from 2008 to 2010 in the market are analyzed, which increase more than 1 million transactions and 1 billion US dollar in transaction volume. Agricultural transaction data has unique characteristics such as frequent changes in supply volumes and turbulent time-dependent changes in price. Since this was the first trial to identify fraud transactions in this domain, there was no training data set for supervised learning. So, fraud detection rules are generated using outlier detection approach. We assume that outlier transactions have more possibility of fraud transactions than normal transactions. The outlier transactions are identified to compare daily average unit price, weekly average unit price, and quarterly average unit price of product items. Also quarterly averages unit price of product items of the specific wholesalers are used to identify outlier transactions. The reliability of generated fraud detection rules are confirmed by domain experts. To determine whether a transaction is fraudulent or not, normal distribution and normalized Z-value concept are applied. That is, a unit price of a transaction is transformed to Z-value to calculate the occurrence probability when we approximate the distribution of unit prices to normal distribution. The modified Z-value of the unit price in the transaction is used rather than using the original Z-value of it. The reason is that in the case of auction exception agricultural products, Z-values are influenced by outlier fraud transactions themselves because the number of wholesalers is small. The modified Z-values are called Self-Eliminated Z-scores because they are calculated excluding the unit price of the specific transaction which is subject to check whether it is fraud transaction or not. To show the usefulness of the proposed approach, a prototype of fraud transaction detection system is developed using Delphi. The system consists of five main menus and related submenus. First functionalities of the system is to import transaction databases. Next important functions are to set up fraud detection parameters. By changing fraud detection parameters, system users can control the number of potential fraud transactions. Execution functions provide fraud detection results which are found based on fraud detection parameters. The potential fraud transactions can be viewed on screen or exported as files. The study is an initial trial to identify fraud transactions in Auction Exception Agricultural Products. There are still many remained research topics of the issue. First, the scope of analysis data was limited due to the availability of data. It is necessary to include more data on transactions, wholesalers, and producers to detect fraud transactions more accurately. Next, we need to extend the scope of fraud transaction detection to fishery products. Also there are many possibilities to apply different data mining techniques for fraud detection. For example, time series approach is a potential technique to apply the problem. Even though outlier transactions are detected based on unit prices of transactions, however it is possible to derive fraud detection rules based on transaction volumes.