본 논문에서는 이러닝 마켓플레이스에서 자기주도학습지원을 위한 추천시스템을 제안한다. 이 시스템은 마켓플레이스를 지원하기위한 개선된 협업필터링을 이용한 추천시스템이다. 기존의 협업필터링 기법은 입력데이터구성, 최근접 이웃선정을 통한 유사고객 그룹을 형성하고, 추천목록 생성하는 3단계로 구성되었다. 본 연구는 이를 개선하여 산업 수준을 고려한 최근접 이웃 교육과정 선정 단계를 추가한 협업필터링에 사용하여, 자기주도학습을 지원할 수 있는 추천시스템을 설계하였다. 이 서비스는 산업체 학습자에게 보다 정확한 교육과정을 선택할 수 있도록 도와준다. 추천시스템은 다양한 기법을 통해 구축되며, 협업필터링 방식을 사용하여 명시적인 속성이 부여 되어진 콘텐츠를 추천하는 것은, 기존 콘텐츠 추천의 한계를 해결하고자 하였다.
The purpose of the research is to analyze the status and problems of the e-Learning quality assurance system on e-Learning contents and service provider(institutes) in the field of enterprise education. In addition, the research is to suggest the direction and strategies for revising and developing the system. The research put emphasis on two systems of the e-Learning quality assurance(contents, service provider) which directly influence financial support of government. This study depended mostly on literature review, supplemented by expert panel meetings. In the case of the quality assurance system on e-Learning contents, the followings are suggested; (1)admitting the contents made of the combination of modules in the approved module set, (2)making easier the qualifying of modified contents for maintenance, (3)revising evaluation criteria, (4)providing substantial feedback. In the field of service provider, the followings are requested; (1)differentiating of qualifying system by industry and scale of company, (2)extending the qualifying cycle, (3)improving the feedback and sharing system.
This paper presents a learning-based visual inspection method that addresses the need for an improved adaptability of a visual inspection system for parts verification in panorama sunroof assembly lines. It is essential to ensure that the many parts required (bolts and nuts, etc.) are properly installed in the PLC sunroof manufacturing process. Instead of human inspectors, a visual inspection system can automatically perform parts verification tasks to assure that parts are properly installed while rejecting any that are improperly assembled. The proposed visual inspection method is able to adapt to changing inspection tasks and environmental conditions through an efficient learning process. The proposed system consists of two major modules: learning mode and test mode. The SVM (Support Vector Machine) learning algorithm is employed to implement part learning and verification. The proposed method is very robust for changing environmental conditions, and various experimental results show the effectiveness of the proposed method.
Lung cancer is a chronic disease which ranks fourth in cancer incidence with 11 percent of the total cancer incidence in Korea. To deal with such issues, there is an active study on the usefulness and utilization of the Clinical Decision Support System (CDSS) which utilizes machine learning. Thus, this study reviews existing studies on artificial intelligence technology that can be used in determining the lung cancer, and conducted a study on the applicability of machine learning in determination of the lung cancer by comparison and analysis using Azure ML provided by Microsoft. The results of this study show different predictions yielded by three algorithms: Support Vector Machine (SVM), Two-Class Support Decision Jungle and Multiclass Decision Jungle. This study has its limitations in the size of the Big data used in Machine Learning. Although the data provided by Kaggle is the most suitable one for this study, it is assumed that there is a limit in learning the data fully due to the lack of absolute figures. Therefore, it is claimed that if the agency's cooperation in the subsequent research is used to compare and analyze various kinds of algorithms other than those used in this study, a more accurate screening machine for lung cancer could be created.
This project aims to design and develop a prototype for an agent that support online collaborative learning. Online collaborative learning, which has emerged as a new form of education in the knowledge-based society, is regarded as an effective method for improving practical and highly advanced problem-solving abilities. Collaborative learning involves complicated processes, such as organizing teams, setting common goals, performing tasks, and evaluating the outcome of team activities. Thus, a teacher may have difficulty promoting and evaluating the entire process of collaborative learning, and a system may need to be developed to support it. Therefore, to promote interaction among learners in the process of collaborative learning, this study designed an extensible collaborative learning agent (ECOLA) for an online learning environment.
오픈소스는 스마트폰의 등장과 함께 놀라운 확산을 하고 있다. 이러닝 분야의 오픈소스인 Moodle 학습관리시스템은, 상용프로그램인 Blackboard를 제외하고 전 세계적으로 가장 많이 사용되고 있는 학습관리시스템이다. 그 이유 중 하나는 교육공학의 이론적 기초가 되며, 이러닝의 핵심 원칙이라 할 수 있는 구성주의 원칙에 따른, 협동학습과 상호작용이 잘 지원되도록 설계되어, 높은 교육적 효과와 장점을 가지기 때문이다. 본 연구에서는 오픈소스인 Moodle 학습관리시스템을 이용한 협동학습 운영 사례를 중심으로, 사용자의 협동학습을 지원하는 구체적 내용을 소개하고, 사례를 통하여 나타난, Moodle 학습관리시스템 협동학습의 장점과 특이점을 살펴본다. 연구 결과 PC와 스마트폰 환경에서 동시에 구현된, Moodle 학습관리시스템의 팀 프로젝트 협동학습을 통하여, 협동학습의 재미와 유용성을 확인하고, 학습자체의 중요성을 넘어 관계의 중요성이 학습자의 협동학습동기를 유발시킨다는 것을 사례를 통하여 확인할 수 있다.
Intelligent remote learning system is a system that incorporate communication technology and others : a database engine, an intelligent tutorial system. Learners can study by themselves through the intelligent tutorial system. The existence of a communication, database and artificial intelligence enhance the capability of IRLS. According to Parsaye, an intelligent databases should have the following features : 1) Knowledge discovery. 2) Data integrity and quality control. 3) Hypermedia management. 4) Data presentation and display. 5) Decision support and scenario analysis. 6) Data format management. 7) Intelligent system design tools. I hope that this research of framework for IRLS paves for the future research. As mentioned in the above, the future work will include an intelligent database, self-learning mechanism using neural network.
자기주도적 창의교육을 중시하는 교육 패러다임에 따라 학생들의 학습을 지원하는 주요한 공적 기관인 학교도서관과 공공도서관은 교과연계프로그램을 통한 자기주도적 학습 지원을 주요 업무로 강조하고 있다. 자기주도적 학습을 위해서는 학습자 중심의 교육 지식정보 제공이 필수적이며, 교과서에 반영된 교육과정을 심화·확장할 수 있는 교과서 연계 참고자료가 풍부하게 확보되어야 한다. 이 연구에서는 우선 초등학교 교과과정을 분석하여 도서관 자료를 적극적으로 활용하거나 확장하고자 하는 정보요구가 큰 주요 교과를 식별하고, 도서관 컬렉션 및 분류체계와 연계할 중점 매핑 포인트를 설정하였다. 각 교과의 학습주제 및 교과연계도서의 서지정보와 함께 한국십진분류법(KDC)의 분류표목 및 상관색인의 도입어를 참조하여 학습주제와 연관된 분류항목을 파악하였다. 이를 바탕으로, 학생들에게 친숙하지 않은 KDC 체계를 초등학교 주요 교과의 단원을 중심으로 재구성하여 학습자 중심의 교과서 연계 서지정보 및 주제정보를 구축하였다. 이를 통해 도서관은 교과과정의 학습주제를 중심으로 이용자별로 타겟화된 도서관 콘텐츠와 초등학교 교육콘텐츠를 연계함으로써 온라인 환경에서 초등학생의 자기주도적 창의학습 지원을 강화할 수 있다.
Journal of the Korean Data and Information Science Society
/
제14권4호
/
pp.1083-1090
/
2003
Web-based learning is currently an active area of research and a considerable number of studies have been conducted on its application in the learning environment. However, in spite of many advances in the research and development of the educational contents, questions about how the environment affects learning remains largely unanswered. In this article, we propose a Web-based learning environment to improve the educational effect. The goal of this article is not to provide a complete system to support Web-based learning but rather to describe some meaningful strategies and fundamental design concepts that utilize information technologies to support teaching and learning.
International Journal of Internet, Broadcasting and Communication
/
제14권2호
/
pp.119-128
/
2022
Recently, due to the development of related technologies for autonomous vehicles, driving work is changing more safely. However, the development of support technologies for level 5 full autonomous driving is still insufficient. That is, even in the case of an autonomous vehicle, the driver needs to drive through forward attention while driving. In this paper, we propose a method to monitor driving tasks by recognizing driver behavior. The proposed method uses pre-trained deep convolutional neural network models to recognize whether the driver's face or body has unnecessary movement. The use of pre-trained Deep Convolitional Neural Network (DCNN) models enables high accuracy in relatively short time, and has the advantage of overcoming limitations in collecting a small number of driver behavior learning data. The proposed method can be applied to an intelligent vehicle safety driving support system, such as driver drowsy driving detection and abnormal driving detection.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.