• Title/Summary/Keyword: learning sources

Search Result 348, Processing Time 0.021 seconds

Applications of Machine Learning Models for the Estimation of Reservoir CO2 Emissions (저수지 CO2 배출량 산정을 위한 기계학습 모델의 적용)

  • Yoo, Jisu;Chung, Se-Woong;Park, Hyung-Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.3
    • /
    • pp.326-333
    • /
    • 2017
  • The lakes and reservoirs have been reported as important sources of carbon emissions to the atmosphere in many countries. Although field experiments and theoretical investigations based on the fundamental gas exchange theory have proposed the quantitative amounts of Net Atmospheric Flux (NAF) in various climate regions, there are still large uncertainties at the global scale estimation. Mechanistic models can be used for understanding and estimating the temporal and spatial variations of the NAFs considering complicated hydrodynamic and biogeochemical processes in a reservoir, but these models require extensive and expensive datasets and model parameters. On the other hand, data driven machine learning (ML) algorithms are likely to be alternative tools to estimate the NAFs in responding to independent environmental variables. The objective of this study was to develop random forest (RF) and multi-layer artificial neural network (ANN) models for the estimation of the daily $CO_2$ NAFs in Daecheong Reservoir located in Geum River of Korea, and compare the models performance against the multiple linear regression (MLR) model that proposed in the previous study (Chung et al., 2016). As a result, the RF and ANN models showed much enhanced performance in the estimation of the high NAF values, while MLR model significantly under estimated them. Across validation with 10-fold random samplings was applied to evaluate the performance of three models, and indicated that the ANN model is best, and followed by RF and MLR models.

Some Practice in Math & Science Classes Found by Clinical Interview with Focus Groups of North Korean Students Who Live in South Korea (탈북 학생들의 교육을 위해 포커스 그룹들과 면담을 통한 교육의 실제 - 수학.과학을 중심으로 -)

  • ChoiKho, Sang-Sook;Shin, Dong-Hee;Kim, Ae-Hwa
    • The Mathematical Education
    • /
    • v.49 no.2
    • /
    • pp.125-148
    • /
    • 2010
  • This study was to find the perception of mathematical & scientific learning of North Korean students who lived in Korea. To understand their perception, three groups as the focus group for clinical interview, consisting of North Korean students, their teaches and their parents, were investigated through narrative description of qualitative method, North Korean students experienced the gap between what they had learned and what they learned in Korea, due to visiting the 3rd country before they came to Korea. So they were in need of well developed instructional instruments based on a precise diagnosis of language ability to help them get over their difficulties. Second, they have difficulties in math & science classes due to differences between curricular and to the differences between the ways of expression of terminologies used in two countries. They expressed that the group work in learning and a great deal of number of problems could be helpful for their needs. Third, the community-service center should be operated in a systematic way to compensate their lack of getting a private education. Fourth, they thought that the supplemental materials should provide some sources that might help them to get over the language barrier and difficulties from the differences, because they depended on them.

Prediction of time dependent local scour around bridge piers in non-cohesive and cohesive beds using machine learning technique (기계학습을 이용한 비점성토 및 점성토 지반에서 시간의존 교각주위 국부세굴의 예측)

  • Choi, Sung-Uk;Choi, Seongwook;Choi, Byungwoong
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1275-1284
    • /
    • 2021
  • This paper presents a machine learning technique applied to prediction of time-dependent local scour around bridge piers in both non-cohesive and cohesive beds. The support vector machines (SVM), which is known to be free from overfitting, is used. The time-dependent scour depths are expressed by 7 and 9 variables for the non-cohesive and cohesive beds, respectively. The SVM models are trained and validated with time series data from different sources of experiments. Resulting Mean Absolute Percentage Error (MAPE) indicates that the models are trained and validated properly. Comparisons are made with the results from Choi and Choi's formula and Scour Rate in Cohesive Soils (SRICOS) method by Briaud et al., as well as measured data. This study reveals that the SVM is capable of predicting time-dependent local scour in both non-cohesive and cohesive beds under the condition that sufficient data of good quality are provided.

Denoise of Astronomical Images with Deep Learning

  • Park, Youngjun;Choi, Yun-Young;Moon, Yong-Jae;Park, Eunsu;Lim, Beomdu;Kim, Taeyoung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.54.2-54.2
    • /
    • 2019
  • Removing noise which occurs inevitably when taking image data has been a big concern. There is a way to raise signal-to-noise ratio and it is regarded as the only way, image stacking. Image stacking is averaging or just adding all pixel values of multiple pictures taken of a specific area. Its performance and reliability are unquestioned, but its weaknesses are also evident. Object with fast proper motion can be vanished, and most of all, it takes too long time. So if we can handle single shot image well and achieve similar performance, we can overcome those weaknesses. Recent developments in deep learning have enabled things that were not possible with former algorithm-based programming. One of the things is generating data with more information from data with less information. As a part of that, we reproduced stacked image from single shot image using a kind of deep learning, conditional generative adversarial network (cGAN). r-band camcol2 south data were used from SDSS Stripe 82 data. From all fields, image data which is stacked with only 22 individual images and, as a pair of stacked image, single pass data which were included in all stacked image were used. All used fields are cut in $128{\times}128$ pixel size, so total number of image is 17930. 14234 pairs of all images were used for training cGAN and 3696 pairs were used for verify the result. As a result, RMS error of pixel values between generated data from the best condition and target data were $7.67{\times}10^{-4}$ compared to original input data, $1.24{\times}10^{-3}$. We also applied to a few test galaxy images and generated images were similar to stacked images qualitatively compared to other de-noising methods. In addition, with photometry, The number count of stacked-cGAN matched sources is larger than that of single pass-stacked one, especially for fainter objects. Also, magnitude completeness became better in fainter objects. With this work, it is possible to observe reliably 1 magnitude fainter object.

  • PDF

Deep Learning based Raw Audio Signal Bandwidth Extension System (딥러닝 기반 음향 신호 대역 확장 시스템)

  • Kim, Yun-Su;Seok, Jong-Won
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1122-1128
    • /
    • 2020
  • Bandwidth Extension refers to restoring and expanding a narrow band signal(NB) that is damaged or damaged in the encoding and decoding process due to the lack of channel capacity or the characteristics of the codec installed in the mobile communication device. It means converting to a wideband signal(WB). Bandwidth extension research mainly focuses on voice signals and converts high bands into frequency domains, such as SBR (Spectral Band Replication) and IGF (Intelligent Gap Filling), and restores disappeared or damaged high bands based on complex feature extraction processes. In this paper, we propose a model that outputs an bandwidth extended signal based on an autoencoder among deep learning models, using the residual connection of one-dimensional convolutional neural networks (CNN), the bandwidth is extended by inputting a time domain signal of a certain length without complicated pre-processing. In addition, it was confirmed that the damaged high band can be restored even by training on a dataset containing various types of sound sources including music that is not limited to the speech.

Classification of Radio Signals Using Wavelet Transform Based CNN (웨이블릿 변환 기반 CNN을 활용한 무선 신호 분류)

  • Song, Minsuk;Lim, Jaesung;Lee, Minwoo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1222-1230
    • /
    • 2022
  • As the number of signal sources with low detectability by using various modulation techniques increases, research to classify signal modulation methods is steadily progressing. Recently, a Convolutional Neural Network (CNN) deep learning technique using FFT as a preprocessing process has been proposed to improve the performance of received signal classification in signal interference or noise environments. However, due to the characteristics of the FFT in which the window is fixed, it is not possible to accurately classify the change over time of the detection signal. Therefore, in this paper, we propose a CNN model that has high resolution in the time domain and frequency domain and uses wavelet transform as a preprocessing process that can express various types of signals simultaneously in time and frequency domains. It has been demonstrated that the proposed wavelet transform method through simulation shows superior performance regardless of the SNR change in terms of accuracy and learning speed compared to the FFT transform method, and shows a greater difference, especially when the SNR is low.

Construction of a Spatio-Temporal Dataset for Deep Learning-Based Precipitation Nowcasting

  • Kim, Wonsu;Jang, Dongmin;Park, Sung Won;Yang, MyungSeok
    • Journal of Information Science Theory and Practice
    • /
    • v.10 no.spc
    • /
    • pp.135-142
    • /
    • 2022
  • Recently, with the development of data processing technology and the increase of computational power, methods to solving social problems using Artificial Intelligence (AI) are in the spotlight, and AI technologies are replacing and supplementing existing traditional methods in various fields. Meanwhile in Korea, heavy rain is one of the representative factors of natural disasters that cause enormous economic damage and casualties every year. Accurate prediction of heavy rainfall over the Korean peninsula is very difficult due to its geographical features, located between the Eurasian continent and the Pacific Ocean at mid-latitude, and the influence of the summer monsoon. In order to deal with such problems, the Korea Meteorological Administration operates various state-of-the-art observation equipment and a newly developed global atmospheric model system. Nevertheless, for precipitation nowcasting, the use of a separate system based on the extrapolation method is required due to the intrinsic characteristics associated with the operation of numerical weather prediction models. The predictability of existing precipitation nowcasting is reliable in the early stage of forecasting but decreases sharply as forecast lead time increases. At this point, AI technologies to deal with spatio-temporal features of data are expected to greatly contribute to overcoming the limitations of existing precipitation nowcasting systems. Thus, in this project the dataset required to develop, train, and verify deep learning-based precipitation nowcasting models has been constructed in a regularized form. The dataset not only provides various variables obtained from multiple sources, but also coincides with each other in spatio-temporal specifications.

A Study on the Learning-Instruction Model for Information Literacy for College Students (대학생의 정보활용능력 교수학습모형 개발에 관한 기초연구)

  • Kim, Sung-Eun;Lee, Myeong-Hee
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.17 no.2
    • /
    • pp.177-200
    • /
    • 2006
  • This research has been done to develope a curricular model for the Information Literacy Course as one of liberal arts courses in Korean universities. This curricular model had resulted from investigating the standards and models for Information Literacy at the 4 standards(ACRL in USA, CAUL in Australia ANZILL in Australia and New Zealand, and SCONUL in the United Kingdom), 5 syllabi for Information Literacy used by 5 American universities and 33 syllabi by 23 Korean universities. On the basis of these educational results of the Information Literacy syllabi, a learning-instruction model has come into being for the Information Literacy Course that includes 7 core areas : information sources, information need, information access. information analysis, information management, information transfer and communication, and information ethics.

Energy-Efficient Operation Simulation of Factory HVAC System based on Machine Learning (머신러닝 기반 공장 HVAC 시스템의 에너지 효율화 운영 시뮬레이션)

  • Seok-Ju Lee;Van Quan Dao
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.2
    • /
    • pp.47-54
    • /
    • 2024
  • The global decrease in traditional energy resources has prompted increasing energy demand, necessitating efforts to replace and optimize energy sources. This study focuses on enhancing energy efficiency in manufacturing plants, known for their high energy consumption. Through simulations and analyses, the study proposes a temperature-based control system for HVAC (Heating, Ventilating, and Air Conditioning) operations, utilizing machine learning algorithms to predict and optimize factory temperatures. The results indicate that this approach, particularly the prediction-based free cooling algorithm, can achieve over 10% energy savings compared to existing systems. This paper presents that implementing an efficient HVAC control system can significantly reduce overall factory energy consumption, with plans to apply it to real factories in the future.

Speech Emotion Recognition in People at High Risk of Dementia

  • Dongseon Kim;Bongwon Yi;Yugwon Won
    • Dementia and Neurocognitive Disorders
    • /
    • v.23 no.3
    • /
    • pp.146-160
    • /
    • 2024
  • Background and Purpose: The emotions of people at various stages of dementia need to be effectively utilized for prevention, early intervention, and care planning. With technology available for understanding and addressing the emotional needs of people, this study aims to develop speech emotion recognition (SER) technology to classify emotions for people at high risk of dementia. Methods: Speech samples from people at high risk of dementia were categorized into distinct emotions via human auditory assessment, the outcomes of which were annotated for guided deep-learning method. The architecture incorporated convolutional neural network, long short-term memory, attention layers, and Wav2Vec2, a novel feature extractor to develop automated speech-emotion recognition. Results: Twenty-seven kinds of Emotions were found in the speech of the participants. These emotions were grouped into 6 detailed emotions: happiness, interest, sadness, frustration, anger, and neutrality, and further into 3 basic emotions: positive, negative, and neutral. To improve algorithmic performance, multiple learning approaches were applied using different data sources-voice and text-and varying the number of emotions. Ultimately, a 2-stage algorithm-initial text-based classification followed by voice-based analysis-achieved the highest accuracy, reaching 70%. Conclusions: The diverse emotions identified in this study were attributed to the characteristics of the participants and the method of data collection. The speech of people at high risk of dementia to companion robots also explains the relatively low performance of the SER algorithm. Accordingly, this study suggests the systematic and comprehensive construction of a dataset from people with dementia.