• 제목/요약/키워드: learning rule

검색결과 653건 처리시간 0.026초

An Approach to Linguistic Instruction Based Learning and Its Application to Helicopter Flight Control

  • M.Sugeno;Park, G.K.
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1082-1085
    • /
    • 1993
  • In this paper, we notice the fact that a human learning process is characterized by a process under a natural language environment, and discuss an approach of learning based on indirect linguistic instructions. An instruction is interpreted through some meaning elements and each trend. Fuzzy evaluation rule are constructed for the searched meaning elements of the given instruction, and the performance of a system to be learned is improved by the evaluation rules. In this paper, we propose a framework of learning based on indirect linguistic instruction based learning using fuzzy theory: FULLINS(FUzzy-Learning based on Linguistic IN-Struction). The validity of FULLINS is shown by applying it to helicopter flight control.

  • PDF

퍼지추론규칙을 이용한 적응형 평가시스템 (An Adaptive Evaluation System Using Fuzzy Reasoning Rule)

  • 엄명용;정순영;이원규
    • 컴퓨터교육학회논문지
    • /
    • 제6권4호
    • /
    • pp.95-113
    • /
    • 2003
  • 본 논문에서는 기존의 LCMS에서 사용되는 평가시스템에 퍼지 추론 규칙을 이용한 적응형 퍼지평가시스템(AFES ; Adaptie Fuzzy Evaluation System)을 제안한다. AFES 는 학습자가 하나의 학습코스(learning course)에 들어가기 전에 퍼지진단평가(fuzzy diagnostic evealuation)를 통해 학습자에게 코스수준(course level)을 부여한다. 학습자는 코스수준에 따른 맞춤식 학습경로(learning path)로 학습을 종료한 후, 퍼지최종평가(fuzzy final evaluation)를 통해 최종성적(final grade)을 AFES 으로부터 부여 받는다. AFES의 가장 큰 특징은 최종성적의 점수 부여 규칙에 있는데, 만약 서로 다른 학습자가 동일한 문제 수에 대하여 같은 수의 정답을 냈더라도, AFES 는 125 가지 퍼지 추론 규칙(fuzzy reasoning rule)에 의거하여 탄력적으로 서로 다른 최종성적을 학습자에게 부여한다.

  • PDF

An Efficient Learning Rule of Simple PR systems

  • Alan M. N. Fu;Hong Yan;Lim, Gi Y .
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.731-739
    • /
    • 1998
  • The probabilistic relaxation(PR) scheme based on the conditional probability and probability space partition has the important property that when its compatibility coefficient matrix (CCM) has uniform components it can classify m-dimensional probabilistic distribution vectors into different classes. When consistency or inconsistency measures have been defined, the properties of PRs are completely determined by the compatibility coefficients among labels of labeled objects and influence weight among labeled objects. In this paper we study the properties of PR in which both compatibility coefficients and influence weights are uniform, and then a learning rule for such PR system is derived. Experiments have been performed to verify the effectiveness of the learning rule.

  • PDF

도립진자 시스템의 뉴로-퍼지 제어에 관한 연구 (A Study on the Neuro-Fuzzy Control for an Inverted Pendulum System)

  • 소명옥;류길수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권4호
    • /
    • pp.11-19
    • /
    • 1996
  • Recently, fuzzy and neural network techniques have been successfully applied to control of complex and ill-defined system in a wide variety of areas, such as robot, water purification, automatic train operation system and automatic container crane operation system, etc. In this paper, we present a neuro-fuzzy controller which unifies both fuzzy logic and multi-layered feedforward neural networks. Fuzzy logic provides a means for converting linguistic control knowledge into control actions. On the other hand, feedforward neural networks provide salient features, such as learning and parallelism. In the proposed neuro-fuzzy controller, the parameters of membership functions in the antecedent part of fuzzy inference rules are identified by using the error backpropagation algorithm as a learning rule, while the coefficients of the linear combination of input variables in the consequent part are determined by using the least square estimation method. Finally, the effectiveness of the proposed controller is verified through computer simulation of an inverted pendulum system.

  • PDF

규칙유도기법을 이용한 이러닝 시스템의 재이용의도 영향요인 분석 및 예측에 관한 연구 (A study on the Analysis and Forecast of Effect Factors in e-Learning Reuse Intention Using Rule Induction Techniques)

  • 배재권;김진화;정화민
    • Journal of Information Technology Applications and Management
    • /
    • 제17권2호
    • /
    • pp.71-90
    • /
    • 2010
  • Electronic learning(or e-learning) has created hype for companies, universities, and other educational institutions. It has led to the phenomenal growth in the use of web-based learning and experimentation with multimedia, video conferencing, and internet-based technologies. Many researchers are interested in the factors that affect to the performance of e-learning or e-learning services. In this sense, this study is aimed at proposing e-learning system reuse prediction models in which e-learner intention to reuse influence factors(i.e., system accessibility, system stability, information clarity, information validity, self-regulated efficacy, computer self-efficacy, perceived usefulness, perceived ease of use, flow, and parental expectation) affect e-learner intention to reuse positively. A web survey was conducted for the full members of the e-learning education institute A in Seoul, Republic of Korea, an exclusive e-learning company that provides real time video lectures via the desktop conferencing system. The web survey was conducted for 20 days from November 5, 2009, through the e-learning web site of the company A. In this study, three data mining techniques were used : the multivariate discriminant analysis, CART, and C5.0 algorithm. This study was conducted to provide the e-learning service providers, e-learning operators, and contents developers with marketing and management strategies for improving the e-learning service companies, based on the data mining analysis results.

  • PDF

Generalized Fuzzy Quantitative Association Rules Mining with Fuzzy Generalization Hierarchies

  • Lee, Keon-Myung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제2권3호
    • /
    • pp.210-214
    • /
    • 2002
  • Association rule mining is an exploratory learning task to discover some hidden dependency relationships among items in transaction data. Quantitative association rules denote association rules with both categorical and quantitative attributes. There have been several works on quantitative association rule mining such as the application of fuzzy techniques to quantitative association rule mining, the generalized association rule mining for quantitative association rules, and importance weight incorporation into association rule mining fer taking into account the users interest. This paper introduces a new method for generalized fuzzy quantitative association rule mining with importance weights. The method uses fuzzy concept hierarchies fer categorical attributes and generalization hierarchies of fuzzy linguistic terms fur quantitative attributes. It enables the users to flexibly perform the association rule mining by controlling the generalization levels for attributes and the importance weights f3r attributes.

규칙 제거 기능이 있는 자기구성 퍼지 시스템 (Self-Organizing Fuzzy Systems with Rule Pruning)

  • 이창욱;이평기
    • 한국산업융합학회 논문집
    • /
    • 제6권1호
    • /
    • pp.37-42
    • /
    • 2003
  • In this paper a self-organizing fuzzy system with rule pruning is proposed. A conventional self-organizing fuzzy system having only rule generation has a drawback in generating many slightly different rules from the existing rules which results in increased computation time and slowly learning. The proposed self-organizing fuzzy system generates fuzzy rules based on input-output data and prunes redundant rules which are caused by parameter training. The proposed system has a simple structure but performs almost equivalent function to the conventional self-organizing fuzzy system. Also, this system has better learning speed than the conventional system. Simulation results on several numerical examples demonstrate the performance of the proposed system.

  • PDF

Rule Extraction from Neural Networks : Enhancing the Explanation Capability

  • Park, Sang-Chan;Lam, Monica-S.;Gupta, Amit
    • 지능정보연구
    • /
    • 제1권2호
    • /
    • pp.57-71
    • /
    • 1995
  • This paper presents a rule extraction algorithm RE to acquire explicit rules from trained neural networks. The validity of extracted rules has been confirmed using 6 different data sets. Based on experimental results, we conclude that extracted rules from RE predict more accurately and robustly than neural networks themselves and rules obtained from an inductive learning algorithm do. Rule extraction algorithm for neural networks are important for incorporating knowledge obtained from trained networks into knowledge based systems. In lieu of this, the proposed RE algorithm contributes to the trend toward developing hybrid and versatile knowledge-based system including expert systems and knowledge-based decision su, pp.rt systems.

  • PDF

화성 진행 학습 모델을 적용한 규칙 기반의 4성부 합창 음악 생성 (Rule-Based Generation of Four-Part Chorus Applied With Chord Progression Learning Model)

  • 조원익;김정훈;천성준;김남수
    • 한국통신학회논문지
    • /
    • 제41권11호
    • /
    • pp.1456-1462
    • /
    • 2016
  • 본 논문에서는 규칙 기반의 4성부 합창 음악 생성 과정에 화성 진행 학습 모델을 적용해 보고자 한다. 제안하는 시스템은 32음의 멜로디를 입력으로 받아 다른 세 성부를 화성학의 규칙에 맞게 완성시켜 주며, 그 과정에서 사용하는 화성 진행을 CRBM 모델을 이용하여 예측한다. 학습 데이터는 화성학 교육 자료집에서 다수 발췌하였으며, 화성 진행을 조성에 독립적으로 추출하여 주어진 데이터를 효과적으로 활용할 수 있도록 하였다. 학습 모델을 적용한 결과물이 기존의 규칙 기반 4성부 합창 음악에 비해 보다 자연스러운 진행을 보임이 확인되었다.

최근점 이웃망에의한 참조벡터 학습 (Learning Reference Vectors by the Nearest Neighbor Network)

  • Kim Baek Sep
    • 전자공학회논문지B
    • /
    • 제31B권7호
    • /
    • pp.170-178
    • /
    • 1994
  • The nearest neighbor classification rule is widely used because it is not only simple but the error rate is asymptotically less than twice Bayes theoretical minimum error. But the method basically use the whole training patterns as the reference vectors. so that both storage and classification time increase as the number of training patterns increases. LVQ(Learning Vector Quantization) resolved this problem by training the reference vectors instead of just storing the whole training patterns. But it is a heuristic algorithm which has no theoretic background there is no terminating condition and it requires a lot of iterations to get to meaningful result. This paper is to propose a new training method of the reference vectors. which minimize the given error function. The nearest neighbor network,the network version of the nearest neighbor classification rule is proposed. The network is funtionally identical to the nearest neighbor classification rule is proposed. The network is funtionally identical to the nearest neighbor classification rule and the reference vectors are represented by the weights between the nodes. The network is trained to minimize the error function with respect to the weights by the steepest descent method. The learning algorithm is derived and it is shown that the proposed method can adjust more reference vectors than LVQ in each iteration. Experiment showed that the proposed method requires less iterations and the error rate is smaller than that of LVQ2.

  • PDF