• 제목/요약/키워드: learning object

검색결과 1,573건 처리시간 0.019초

SCORM 기반 학습객체 시퀀싱 생성 도구 (Generation Tool of Learning Object Sequencing based on SCORM)

  • 국선화;박복자;송은하;정영식
    • 정보처리학회논문지A
    • /
    • 제11A권2호
    • /
    • pp.207-212
    • /
    • 2004
  • 본 연구에서는 SCORM 시퀀싱 모델을 기반으로 학습객체의 구조에 대한 정보, 학습자에게 학습 객체를 어떻게 전달할 지를 결정하는 규칙 등을 포함하고 있는 학습 컨텐츠 구조를 제시한다. 다양한 학습 환경에서 학습 컨텐츠 객체의 재사용과 공유가 쉬워진다. 서로 다른 교수법을 적용하여 학습이 진행되도록 동일한 학습 객체들에 대한 시퀀싱 생성 도구를 개발한다. 또한 학습자 정보 트래킹을 위한 SCO(Sharable Content Object) 함수를 추가하고 학습 객체가 SCORM RTE(Run-Time Environment)와 통신을 위해 PIF(Package Interchange File)로 자동 패키징 시킨다.

Deep Learning Machine Vision System with High Object Recognition Rate using Multiple-Exposure Image Sensing Method

  • Park, Min-Jun;Kim, Hyeon-June
    • 센서학회지
    • /
    • 제30권2호
    • /
    • pp.76-81
    • /
    • 2021
  • In this study, we propose a machine vision system with a high object recognition rate. By utilizing a multiple-exposure image sensing technique, the proposed deep learning-based machine vision system can cover a wide light intensity range without further learning processes on the various light intensity range. If the proposed machine vision system fails to recognize object features, the system operates in a multiple-exposure sensing mode and detects the target object that is blocked in the near dark or bright region. Furthermore, short- and long-exposure images from the multiple-exposure sensing mode are synthesized to obtain accurate object feature information. That results in the generation of a wide dynamic range of image information. Even with the object recognition resources for the deep learning process with a light intensity range of only 23 dB, the prototype machine vision system with the multiple-exposure imaging method demonstrated an object recognition performance with a light intensity range of up to 96 dB.

Wild Image Object Detection using a Pretrained Convolutional Neural Network

  • Park, Sejin;Moon, Young Shik
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제3권6호
    • /
    • pp.366-371
    • /
    • 2014
  • This paper reports a machine learning approach for image object detection. Object detection and localization in a wild image, such as a STL-10 image dataset, is very difficult to implement using the traditional computer vision method. A convolutional neural network is a good approach for such wild image object detection. This paper presents an object detection application using a convolutional neural network with pretrained feature vector. This is a very simple and well organized hierarchical object abstraction model.

딥러닝 기반 객체 인식 기술 동향 (Trends on Object Detection Techniques Based on Deep Learning)

  • 이진수;이상광;김대욱;홍승진;양성일
    • 전자통신동향분석
    • /
    • 제33권4호
    • /
    • pp.23-32
    • /
    • 2018
  • Object detection is a challenging field in the visual understanding research area, detecting objects in visual scenes, and the location of such objects. It has recently been applied in various fields such as autonomous driving, image surveillance, and face recognition. In traditional methods of object detection, handcrafted features have been designed for overcoming various visual environments; however, they have a trade-off issue between accuracy and computational efficiency. Deep learning is a revolutionary paradigm in the machine-learning field. In addition, because deep-learning-based methods, particularly convolutional neural networks (CNNs), have outperformed conventional methods in terms of object detection, they have been studied in recent years. In this article, we provide a brief descriptive summary of several recent deep-learning methods for object detection and deep learning architectures. We also compare the performance of these methods and present a research guide of the object detection field.

정확히 재가중되는 온라인 전체 에러율 최소화 기반의 객체 추적 (Object Tracking Based on Exactly Reweighted Online Total-Error-Rate Minimization)

  • 장세인;박충식
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.53-65
    • /
    • 2019
  • 영상 기반의 보안 시스템의 증가함에 따라 각 용도마다 다른 다양한 객체들에 대한 처리들이 중요해지고 있다. 객체 추적은 객체 인식, 검출과 같은 작업들과 함께 필수적인 작업으로 다뤄진다. 이 객체 추적을 달성하기 위해서 다양한 머신러닝이 적용될 수 있다. 성공적인 분류기로써 전체 에러율 최소화(total-error-rate minimization) 기반의 방법론이 사용될 수 있다. 이 전체 에러율 최소화 기반의 방법론은 오프라인 학습을 기반으로 하고 있다. 객체 추적은 실시간으로 처리하며 갱신해야하는 것이 필수적이므로 온라인 학습(online learning)을 기반으로 하는 것이 적합하다. 온라인 전체 에러율 최소화 방법론이 개발되었지만 점근적으로 재가중되는(approximately reweighted) 작업이 포함되어 에러를 누적시킬 수 있다는 단점이 있다. 본 논문에서는 정확하게 재가중되는(exactly reweighted) 방법론을 제안하면서 온라인 전체 에러율 최소화가 달성되었다. 이 제안된 온라인 학습 방법론을 객체 추적에 적용하여 총 8개의 데이터베이스에서 다른 추적 방법론들 보다 좋은 성능이 달성되었다.

Meta Learning based Object Tracking Technology: A Survey

  • Ji-Won Baek;Kyungyong Chung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권8호
    • /
    • pp.2067-2081
    • /
    • 2024
  • Recently, image analysis research has been actively conducted due to the accumulation of big image data and the development of deep learning. Image analytics research has different characteristics from other data such as data size, real-time, image quality diversity, structural complexity, and security issues. In addition, a large amount of data is required to effectively analyze images with deep-learning models. However, in many fields, the data that can be collected is limited, so there is a need for meta learning based image analysis technology that can effectively train models with a small amount of data. This paper presents a comprehensive survey of meta-learning-based object-tracking techniques. This approach comprehensively explores object tracking methods and research that can achieve high performance in data-limited situations, including key challenges and future directions. It provides useful information for researchers in the field and can provide insights into future research directions.

모바일 환경 신뢰도 평가 학습에 의한 다중 객체 추적 (Multi-Object Tracking based on Reliability Assessment of Learning in Mobile Environment)

  • 한우리;김영섭;이용환
    • 반도체디스플레이기술학회지
    • /
    • 제14권3호
    • /
    • pp.73-77
    • /
    • 2015
  • This paper proposes an object tracking system according to reliability assessment of learning in mobile environments. The proposed system is based on markerless tracking, and there are four modules which are recognition, tracking, detecting and learning module. Recognition module detects and identifies an object to be matched on current frame correspond to the database using LSH through SURF, and then this module generates a standard object information that has the best reliability of learning. The standard object information is used for evaluating and learning the object that is successful tracking in tracking module. Detecting module finds out the object based on having the best possible knowledge available among the learned objects information, when the system fails to track. The experimental results show that the proposed system is able to recognize and track the reliable objects with reliability assessment of learning for the use of mobile platform.

비주얼 서보잉을 위한 딥러닝 기반 물체 인식 및 자세 추정 (Object Recognition and Pose Estimation Based on Deep Learning for Visual Servoing)

  • 조재민;강상승;김계경
    • 로봇학회논문지
    • /
    • 제14권1호
    • /
    • pp.1-7
    • /
    • 2019
  • Recently, smart factories have attracted much attention as a result of the 4th Industrial Revolution. Existing factory automation technologies are generally designed for simple repetition without using vision sensors. Even small object assemblies are still dependent on manual work. To satisfy the needs for replacing the existing system with new technology such as bin picking and visual servoing, precision and real-time application should be core. Therefore in our work we focused on the core elements by using deep learning algorithm to detect and classify the target object for real-time and analyzing the object features. We chose YOLO CNN which is capable of real-time working and combining the two tasks as mentioned above though there are lots of good deep learning algorithms such as Mask R-CNN and Fast R-CNN. Then through the line and inside features extracted from target object, we can obtain final outline and estimate object posture.

Sharing e-Learning Object Metadata Using ebXML Registries for Semantic Grid Computing

  • Kim, Hyoung-Do
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제2권5호
    • /
    • pp.239-252
    • /
    • 2008
  • To facilitate the processes of e-learning resource description, discovery and reuse, e-learning objects should be appropriately described and classified using standard metadata that need to be published in a registry to reduce duplication of effort and enhance semantic interoperability. This paper describes how standard ebXML registries can be used for semantic grid computing for annotating, storing, discovering and retrieving e-learning object metadata. For semantic annotation of e-learning objects, IEEE Learning Object Metadata (LOM) is adopted as the metadata ontology. In order to support the e-learning metadata ontology in interoperable ebXML registries, a mapping scheme between LOM and ebXML Registry Information Model (RIM) is proposed. The usefulness of sharing e-learning object metadata is demonstrated by prototyping a semantic registry based on the scheme.

딥러닝 기술을 이용한 3차원 객체 추적 기술 리뷰 (A Review of 3D Object Tracking Methods Using Deep Learning)

  • 박한훈
    • 융합신호처리학회논문지
    • /
    • 제22권1호
    • /
    • pp.30-37
    • /
    • 2021
  • 카메라 영상을 이용한 3차원 객체 추적 기술은 증강현실 응용 분야를 위한 핵심 기술이다. 영상 분류, 객체 검출, 영상 분할과 같은 컴퓨터 비전 작업에서 CNN(Convolutional Neural Network)의 인상적인 성공에 자극 받아, 3D 객체 추적을 위한 최근의 연구는 딥러닝(deep learning)을 활용하는 데 초점을 맞추고 있다. 본 논문은 이러한 딥러닝을 활용한 3차원 객체 추적 방법들을 살펴본다. 딥러닝을 활용한 3차원 객체 추적을 위한 주요 방법들을 설명하고, 향후 연구 방향에 대해 논의한다.