• Title/Summary/Keyword: learning environment organization

Search Result 144, Processing Time 0.02 seconds

A Study of a Semantic Web Driven Architecture in Information Retrieval: Developing an Exploratory Discovery Model Using Ontology and Social Tagging (정보검색의 시맨틱웹 지향 설계에 관한 연구 - 온톨로지와 소셜태깅을 활용한 탐험적 발견행위 모델개발을 중심으로 -)

  • Cho, Myung-Dae
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.21 no.3
    • /
    • pp.151-163
    • /
    • 2010
  • It is necessary, due to changes in the information environment, to investigate problems in existing information retrieval systems. Ontologies and social tagging, which are a relatively new means of information organization, enable exploratory discovery of information. These two connect a thought of a user with the thoughts of numerous other people on the Internet. With these connection chains through the interactions, users are foraging information actively and exploratively. Thus, the purpose of this study is, through qualitative research methods, to identify numerous discovery facilitators provided by ontologies and social tagging, and to create an exploratory discovery model based on them. The results show that there are three uppermost categories in which 5, 4 and 4 subcategories are enumerated respectively. The first category, 'Browsing and Monitoring,' has 5 sub categories: Noticing the Needs, Being Aware, Perceiving, Stopping, and Examining a Resource. The second category, Actively Participating, has 4 categories: Constructing Meaning, Social Bookmarking and Tagging, Sharing on Social Networking, Specifying the Original Needs. The third category, Actively Extends Thinking, also has 4 categories: Social Learning, Emerging Fortuitous Discovery, Creative Thinking, Enhancing Problem Solving Abilities. This model could contribute to the design of information systems, which enhance the ability of exploratory discovery.

Design of Body Movement Program with the Application of Feldenkrais Method® - Foucing on Parkinson's Disease (펠든크라이스 기법®을 적용한 신체 움직임 프로그램 설계 - 파킨슨병 환자를 중심으로)

  • So Jung Park
    • Trans-
    • /
    • v.14
    • /
    • pp.35-63
    • /
    • 2023
  • Parkinson's disease is a degenerative neurological disease that affects even basic daily life movements due to impairment of body function caused by a lack of dopamine, which is charge of the body movement. Presently, it is hard to cure Parkinson's disease entirely with medical technology, so movement therapy as a solution to delay and prevent disease is getting more attention. Therefore, this study aims at desiging and disseminating a body movement program that concentrates on individual self-care and balacing the state of body and mind by applying the Feldenkrais Method® to patients with Parkinson's disease. The Feldenkrais Method® is a mind-body perceptual learning method using body movements. It is a methodology that re-educates the nervous system by connecting the brain and behavior as a function of neuroplasticity. In this study, the body movement program developed and verified by the researcher was modified and supplemented with a focus on the self-awareness of the Feldenkrais Method®. A 24-session physical exercise program was composed of 5 stages to improve the self-management ability of patients with Parkinson's disease. The stages include self-awareness, self-observation, self-organization, self-control, and self-care. The overall changes recognize one's condition and improve one's ability to detect modifications in the internal sense and external environment. In conclusion, the body movement program improves the body movement program improves mental and physical functions and self-care for Parkinson's disease patients through the Feldenkrais method. The availability of the program's on-site applicability remains a follow-up task. Furthermore, it is necessary to establish a systematic structure to spread it more widely through convergent cooperation with the scientific field applied with metaverse as a reference for the wellness of the elderly.

Analysis of Competency of Nursing Teacher in Specialized Vocational High School (특성화고등학교 간호과 교사의 역량 분석)

  • Yoon, In-Kyung;Jang, Myung-Hee;Kwak, Mi-sun;Park, Ji-Young
    • Journal of vocational education research
    • /
    • v.37 no.3
    • /
    • pp.85-111
    • /
    • 2018
  • The purpose of this study is to derive the competence of nursing teacher in Specialized vocational high school. The knowledge, skills, and attitudes required for the nursing teachers were verified and the competency groups and sub-competencies were verified and priorities were suggested. To do this, 23 nursing teachers who were currently working in the Specialized vocational high school were selected as expert panels and the study was conducted using Delphi and Layered Analysis(AHP) technique. The results of this study were as follows. First, the competency group of the nursing teacher in Specialized vocational high school showed teaching and learning methods & techniques, student guidance, curriculum development and operation, school management support, industry-academy cooperation, self-development and professionalism improvement. The total number was 6. Second, the sub-competency is composed of knowledge and skills related to the curriculum, planning and preparation of instruction, instruction operation, guidance of experiment and practice, instruction evaluation, development and utilization of teaching and learning medium, instruction environment, guidance on student education activities outside the curriculum, career guidance, life guidance, class management, guidance of technology and qualification, development of school curriculum, organization and operation of school curriculum, planning and operation of field practice, work planning, school management support, teacher evaluation and personnel management support, leaning support(practice place and equipment), establishment and operation of industry-academia cooperation, strengthening community cooperation, public relations in the school(department), field research for improvement of educational activities, participation in conferences and training, exploration of new knowledge and technology, The total number was 26. The most important of the relative importance was the curriculum development and operation. The subordinate competencies that have a high priority in each competency group were guidance of experiment and practice, guidance of technology and qualification, planning and operation of field practice, leaning support(practice place and equipment), management and work planning, establishment and operation of industry-academia cooperation, exploration of new knowledge and technology. The competency system derived from this study will be applied to the training and evaluation of nursing teachers in the future and can be used as basic data for related research.

A Hybrid Forecasting Framework based on Case-based Reasoning and Artificial Neural Network (사례기반 추론기법과 인공신경망을 이용한 서비스 수요예측 프레임워크)

  • Hwang, Yousub
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.43-57
    • /
    • 2012
  • To enhance the competitive advantage in a constantly changing business environment, an enterprise management must make the right decision in many business activities based on both internal and external information. Thus, providing accurate information plays a prominent role in management's decision making. Intuitively, historical data can provide a feasible estimate through the forecasting models. Therefore, if the service department can estimate the service quantity for the next period, the service department can then effectively control the inventory of service related resources such as human, parts, and other facilities. In addition, the production department can make load map for improving its product quality. Therefore, obtaining an accurate service forecast most likely appears to be critical to manufacturing companies. Numerous investigations addressing this problem have generally employed statistical methods, such as regression or autoregressive and moving average simulation. However, these methods are only efficient for data with are seasonal or cyclical. If the data are influenced by the special characteristics of product, they are not feasible. In our research, we propose a forecasting framework that predicts service demand of manufacturing organization by combining Case-based reasoning (CBR) and leveraging an unsupervised artificial neural network based clustering analysis (i.e., Self-Organizing Maps; SOM). We believe that this is one of the first attempts at applying unsupervised artificial neural network-based machine-learning techniques in the service forecasting domain. Our proposed approach has several appealing features : (1) We applied CBR and SOM in a new forecasting domain such as service demand forecasting. (2) We proposed our combined approach between CBR and SOM in order to overcome limitations of traditional statistical forecasting methods and We have developed a service forecasting tool based on the proposed approach using an unsupervised artificial neural network and Case-based reasoning. In this research, we conducted an empirical study on a real digital TV manufacturer (i.e., Company A). In addition, we have empirically evaluated the proposed approach and tool using real sales and service related data from digital TV manufacturer. In our empirical experiments, we intend to explore the performance of our proposed service forecasting framework when compared to the performances predicted by other two service forecasting methods; one is traditional CBR based forecasting model and the other is the existing service forecasting model used by Company A. We ran each service forecasting 144 times; each time, input data were randomly sampled for each service forecasting framework. To evaluate accuracy of forecasting results, we used Mean Absolute Percentage Error (MAPE) as primary performance measure in our experiments. We conducted one-way ANOVA test with the 144 measurements of MAPE for three different service forecasting approaches. For example, the F-ratio of MAPE for three different service forecasting approaches is 67.25 and the p-value is 0.000. This means that the difference between the MAPE of the three different service forecasting approaches is significant at the level of 0.000. Since there is a significant difference among the different service forecasting approaches, we conducted Tukey's HSD post hoc test to determine exactly which means of MAPE are significantly different from which other ones. In terms of MAPE, Tukey's HSD post hoc test grouped the three different service forecasting approaches into three different subsets in the following order: our proposed approach > traditional CBR-based service forecasting approach > the existing forecasting approach used by Company A. Consequently, our empirical experiments show that our proposed approach outperformed the traditional CBR based forecasting model and the existing service forecasting model used by Company A. The rest of this paper is organized as follows. Section 2 provides some research background information such as summary of CBR and SOM. Section 3 presents a hybrid service forecasting framework based on Case-based Reasoning and Self-Organizing Maps, while the empirical evaluation results are summarized in Section 4. Conclusion and future research directions are finally discussed in Section 5.