• Title/Summary/Keyword: learning classification

Search Result 3,333, Processing Time 0.032 seconds

A Case Study on the Application of Plant Classification Learning for 4th Grade Elementary School Using Machine Learning in Online Learning (온라인 학습에서 머신러닝을 활용한 초등 4학년 식물 분류 학습의 적용 사례 연구)

  • Shin, Won-Sub;Shin, Dong-Hoon
    • Journal of Korean Elementary Science Education
    • /
    • v.40 no.1
    • /
    • pp.66-80
    • /
    • 2021
  • This study is a case study that applies plant classification learning using machine learning to fourth graders in elementary school in online learning situations. In this study, a plant classification learning education program associated with 2015 revision science curriculum was developed by applying the Artificial Intelligence biological classification teaching Learning model. The study participants were 31 fourth graders who agreed to participate voluntarily. Plant classification learning using machine learning was applied six hours for three weeks. The results of this study are as follows. First, as a result of image analysis on artificial intelligence, participants were mainly aware of artificial intelligence as mechanical (27%), human (23%) and household goods (23%). Second, an artificial intelligence recognition survey by semantic discrimination found that artificial intelligence was recognized as smart, good, accurate, new, interesting, necessary, and diverse. Third, there was a difference between men and women in perception and emotion of artificial intelligence, and there was no difference in perception of the ability of artificial intelligence. Fourth, plant classification learning using machine learning in this study influenced changes in artificial intelligence perception. Fifth, plant classification learning using machine learning in this study had a positive effect on reasoning ability.

Network Traffic Classification Based on Deep Learning

  • Li, Junwei;Pan, Zhisong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4246-4267
    • /
    • 2020
  • As the network goes deep into all aspects of people's lives, the number and the complexity of network traffic is increasing, and traffic classification becomes more and more important. How to classify them effectively is an important prerequisite for network management and planning, and ensuring network security. With the continuous development of deep learning, more and more traffic classification begins to use it as the main method, which achieves better results than traditional classification methods. In this paper, we provide a comprehensive review of network traffic classification based on deep learning. Firstly, we introduce the research background and progress of network traffic classification. Then, we summarize and compare traffic classification based on deep learning such as stack autoencoder, one-dimensional convolution neural network, two-dimensional convolution neural network, three-dimensional convolution neural network, long short-term memory network and Deep Belief Networks. In addition, we compare traffic classification based on deep learning with other methods such as based on port number, deep packets detection and machine learning. Finally, the future research directions of network traffic classification based on deep learning are prospected.

Learning and Classification in the Extensional Object Model (확장개체모델에서의 학습과 계층파악)

  • Kim, Yong-Jae;An, Joon-M.;Lee, Seok-Jun
    • Asia pacific journal of information systems
    • /
    • v.17 no.1
    • /
    • pp.33-58
    • /
    • 2007
  • Quiet often, an organization tries to grapple with inconsistent and partial information to generate relevant information to support decision making and action. As such, an organization scans the environment interprets scanned data, executes actions, and learns from feedback of actions, which boils down to computational interpretations and learning in terms of machine learning, statistics, and database. The ExOM proposed in this paper is geared to facilitate such knowledge discovery found in large databases in a most flexible manner. It supports a broad range of learning and classification styles and integrates them with traditional database functions. The learning and classification components of the ExOM are tightly integrated so that learning and classification of objects is less burdensome to ordinary users. A brief sketch of a strategy as to the expressiveness of terminological language is followed by a description of prototype implementation of the learning and classification components of the ExOM.

A Data-centric Analysis to Evaluate Suitable Machine-Learning-based Network-Attack Classification Schemes

  • Huong, Truong Thu;Bac, Ta Phuong;Thang, Bui Doan;Long, Dao Minh;Quang, Le Anh;Dan, Nguyen Minh;Hoang, Nguyen Viet
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.169-180
    • /
    • 2021
  • Since machine learning was invented, there have been many different machine learning-based algorithms, from shallow learning to deep learning models, that provide solutions to the classification tasks. But then it poses a problem in choosing a suitable classification algorithm that can improve the classification/detection efficiency for a certain network context. With that comes whether an algorithm provides good performance, why it works in some problems and not in others. In this paper, we present a data-centric analysis to provide a way for selecting a suitable classification algorithm. This data-centric approach is a new viewpoint in exploring relationships between classification performance and facts and figures of data sets.

Multi-type Image Noise Classification by Using Deep Learning

  • Waqar Ahmed;Zahid Hussain Khand;Sajid Khan;Ghulam Mujtaba;Muhammad Asif Khan;Ahmad Waqas
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.7
    • /
    • pp.143-147
    • /
    • 2024
  • Image noise classification is a classical problem in the field of image processing, machine learning, deep learning and computer vision. In this paper, image noise classification is performed using deep learning. Keras deep learning library of TensorFlow is used for this purpose. 6900 images images are selected from the Kaggle database for the classification purpose. Dataset for labeled noisy images of multiple type was generated with the help of Matlab from a dataset of non-noisy images. Labeled dataset comprised of Salt & Pepper, Gaussian and Sinusoidal noise. Different training and tests sets were partitioned to train and test the model for image classification. In deep neural networks CNN (Convolutional Neural Network) is used due to its in-depth and hidden patterns and features learning in the images to be classified. This deep learning of features and patterns in images make CNN outperform the other classical methods in many classification problems.

A Formal Presentation of the Extensional Object Model (외연적 객체모델의 정형화)

  • Jeong, Cheol-Yong
    • Asia pacific journal of information systems
    • /
    • v.5 no.2
    • /
    • pp.143-176
    • /
    • 1995
  • We present an overview of the Extensional Object Model (ExOM) and describe in detail the learning and classification components which integrate concepts from machine learning and object-oriented databases. The ExOM emphasizes flexibility in information acquisition, learning, and classification which are useful to support tasks such as diagnosis, planning, design, and database mining. As a vehicle to integrate machine learning and databases, the ExOM supports a broad range of learning and classification methods and integrates the learning and classification components with traditional database functions. To ensure the integrity of ExOM databases, a subsumption testing rule is developed that encompasses categories defined by type expressions as well as concept definitions generated by machine learning algorithms. A prototype of the learning and classification components of the ExOM is implemented in Smalltalk/V Windows.

  • PDF

Learning Networks for Learning the Pattern Vectors causing Classification Error (분류오차유발 패턴벡터 학습을 위한 학습네트워크)

  • Lee Yong-Gu;Choi Woo-Seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.5 s.37
    • /
    • pp.77-86
    • /
    • 2005
  • In this paper, we designed a learning algorithm of LVQ that extracts classification errors and learns ones and improves classification performance. The proposed LVQ learning algorithm is the learning Networks which is use SOM to learn initial reference vectors and out-star learning algorithm to determine the class of the output neurons of LVQ. To extract pattern vectors which cause classification errors, we proposed the error-cause condition, which uses that condition and constructed the pattern vector space which consists of the input pattern vectors that cause the classification errors and learned these pattern vectors , and improved performance of the pattern classification. To prove the performance of the proposed learning algorithm, the simulation is performed by using training vectors and test vectors that are Fisher' Iris data and EMG data, and classification performance of the proposed learning method is compared with ones of the conventional LVQ, and it was a confirmation that the proposed learning method is more successful classification than the conventional classification.

  • PDF

Automatic Classification of Learning Objects Using Case-based Cohesion for Learning Management System (학습관리시스템을 위한 사례 기반 응집도를 이용한 학습객체 자동 분류)

  • Kim, Hyung-Il;Yoon, Hyun-Nim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2785-2791
    • /
    • 2012
  • In this paper, a method for automatic classification of learning objects is proposed for effective management and reuse of learning contents. Proposed method will create cohesion of learning objects using cases of learning objects and perform automatic classification of learning objects by measuring their relationship based on cohesion. Application of proposed method to learning management system has the advantage of reducing the costs for developing learning contents. Simulation has shown the average accuracy of 28.20% with probability-based method and 56.38% with cohesion-based method. Simulation has proved that the method proposed in this paper is effective in automatic classification of learning objects.

A Comparison Study of Classification Algorithms in Data Mining

  • Lee, Seung-Joo;Jun, Sung-Rae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • Generally the analytical tools of data mining have two learning types which are supervised and unsupervised learning algorithms. Classification and prediction are main analysis tools for supervised learning. In this paper, we perform a comparison study of classification algorithms in data mining. We make comparative studies between popular classification algorithms which are LDA, QDA, kernel method, K-nearest neighbor, naive Bayesian, SVM, and CART. Also, we use almost all classification data sets of UCI machine learning repository for our experiments. According to our results, we are able to select proper algorithms for given classification data sets.

A Study on the Classification of Surface Defect Based on Deep Convolution Network and Transfer-learning (신경망과 전이학습 기반 표면 결함 분류에 관한 연구)

  • Kim, Sung Joo;Kim, Gyung Bum
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.64-69
    • /
    • 2021
  • In this paper, a method for improving the defect classification performance in low contrast, ununiformity and featureless steel plate surfaces has been studied based on deep convolution neural network and transfer-learning neural network. The steel plate surface images have low contrast, ununiformity, and featureless, so that the contrast between defect and defect-free regions are not discriminated. These characteristics make it difficult to extract the feature of the surface defect image. A classifier based on a deep convolution neural network is constructed to extract features automatically for effective classification of images with these characteristics. As results of the experiment, AlexNet-based transfer-learning classifier showed excellent classification performance of 99.43% with less than 160 seconds of training time. The proposed classification system showed excellent classification performance for low contrast, ununiformity, and featureless surface images.