• Title/Summary/Keyword: lean-combustion limit

Search Result 109, Processing Time 0.019 seconds

Lean Combustion Characteristics in a S.I Engine with SCV by Operating Conditions (SCV 가솔린 엔진의 운전조건에 따른 희박연소 특성)

  • Choi, Su-Jin;Jeon, Chung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.161-168
    • /
    • 2000
  • Lean combustion in a SI engine is one of the best solution for the improvement of fuel economy and reduction of pollutant emission. In order to access a lean combustion engine, stable combustion at lean AlF ratio is needed. In this paper, the effect of fuel injection timing on lean misfire limit has been investigated in an MPI engine. To investigate the interaction of injection timing and intake flow characteristics, three different swirl generating SCV(swirl control valve) configurations were considered, and investigated their effects on lean misfire limit and torque at full load operation. Also the effects of spark timing on lean combustion has been investigated. Lean combustion has been examined and the results are reported in this paper. SCV B has been developed to satisfy the requirements of sufficient swirl generation to improve lean combustion and stable performance. It is found that injection timing, spark timing and intake air motion govern the stable lean combustion.

A study on expansion of lean burn limit with direct injection of the heavy-duty CNG engine (대형 CNG기관의 직접분사화에 의한 희박한계확장)

  • Park, Jung-Il;Chung, Chan-Moon;Noh, Ki-Chul;Lee, Jong-Tai
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3282-3287
    • /
    • 2007
  • Lean combustion is one of the most promising method for increasing engine efficiency and reducing the exhaust emission from SI gas engines. Due to the possibility of partial burn and misfire, however, under lean burn operation, stable flame kernel formation and fast burn rate are needed to guarantee a successful subsequent combustion. Experiment data were obtained on a single-cylinder CNG fueled SI engine to investigate the effect of direct injection, spark timing and variation of injection timing. Experimental results show that lean burn limit is ${\lambda}$=1.3 with port injection, and expansion of lean burn limit ${\lambda}$=1.4 with direct injection method, due to increase of turbulence intensity in cylinder and stratified charge. Combustion duration in lean region is improved by using the variation of injection timing.

  • PDF

The Effects of Intake Swirl Flow en Lean Combustion in an Sl Engine (흡입 스월유동이 Sl기관의 희박연소에 미치는 영향)

  • 정구섭;전충환;장영준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1298-1307
    • /
    • 2001
  • Recently, the efforts to improve fuel economy and to reduce pollutant emission have become the main subject in the development of a gasoline engine. A lean combustion engine admitted as the best alternative is relatively lower fuel consumption rate and exhaust emissions. In this study, it is focused on intensifying intake flow field as one of methods to improve the performance of the lean combustion. First, three different types of suitable swirl control valve(SC7) with high swirl and tumble ratio are selected through steady flow experiment, being installed in a spark ignition engine. The relationship between lean misfire limit and torque was investigated with injection timing and spark ignition timing. Also, the effect of intensified swirl new on the combustion Stability and exhaust emissions was experimently examined by the measuring in-cylinder pressure and combustion variation. The results show that the engine with swirl control calve is superior to other conventional engine on the lean misfire limit, specific torque, combustion variation and emission, and the appropriate injection timing and spark ignition timing exist according to the type of swirl control valve.

  • PDF

Effect of Fuel Injector-type Spark Plug on Combustion Characteristics

  • Yeom, J.K.;Chung, S.S.
    • Journal of ILASS-Korea
    • /
    • v.14 no.4
    • /
    • pp.171-177
    • /
    • 2009
  • This study proposes a new stratified charge system for low emission and ultra lean burn. In order to examine combustion characteristics of the new system, sparkplug with a hole at positive pole and a common CNG injector for injecting fuel were used in this study as injector-type spark plug. The new stratified charge system injects fuel of extremely small quantities and ignites mixture around sparkplug gap. Also, the system was fitted in a visualized constant volume chamber. Then, for analysis of the combustion characteristics, we examined combustion pressure, lean inflammable limit, and visualized combustion flame according to equivalence ratio by comparison with homogeneous charge (HC) method and the new stratified charge (SC) method. As results of this study, in the case of using this system, the propagation speed of initial flame was increased and total combustion period was reduced in the ultra lean burn in the same equivalence ratio. These phenomena occurred clearly under the conditions of lean equivalence ratio. Furthermore, the lean inflammable limit of mixture was extended by using the injector-type spark plug.

  • PDF

A New Flame-Stabilization Technology for Lean Mixtures

  • Kim, Duck-Jool;Choi, Gyung-Min
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.426-432
    • /
    • 2000
  • The development of a low-pollution burner is important for saving energy and preserving the environment. A low-pollution burner can be produced by lean-mixture combustion and general combustion technology. The flammable limit of premixed flame is narrower than that of diffusion flame. Producing a lean mixture of fuel results in an effective combustion condition, which in turn produces high load and low pollution. In this study, it was found that the influx of $Q_2$ had an effect on extending the lean flammable limits and flame stabilization in a doubled jet burner. And the flame, consisting of small eddies, can be stabilized by the nozzle neck phenomena.

  • PDF

Effects on Combustion Characteristics Induced by Ignition Timing and Shape of Passagehole in a IDI Type Constant Volume Combustion Chamber (IDI형 정적 연소기에서 점화시기 및 연락공의 형상이 연소특성에 미치는 영향)

  • 윤수한;이중순;김현지;박춘근;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.220-231
    • /
    • 1996
  • In this research, we use IDI type constant volume combustion chamber which may make up stratified combustion to construct the design back data of lean-burn engine. Some experiments are conducted by the passagehole angle in the adapter of main chamber and sub-chamber. The effects on the combustion characteristics according to the ignition timing are investigated. The used fuel is methanol prospective for alternative fuel. Fuel is injected under 10.78MPa using solenoid and accumulator. As the results of the experiment, combustion characteristics reveals that ignition timing, passagehole angle and shape greatly effects on. Lean inflammability limit is extended to 0.45 in equivalence ratio.

  • PDF

Effects of Injection Timing on the Lean Misfire Limit in a SI Engine (가솔린 엔진의 연료분사시기가 희박가연한계에 미치는 영향에 관한 연구)

  • 엄인용;정경석;정인석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.97-103
    • /
    • 1997
  • Effects of fuel injection timing on the lean misfire limit of a sequential MPI SI engine has been investigated. To investigate the interaction of injection timing and intake flow characteristics, so called axial stratification phenomena, 4 kinds of different intake swirl port of the same combustion chamber geometry have been teated in a single cylinder engine test bench. And 2 kinds of fuel, gasoline and compressed natural gas(CNG), were used to see the effect of liquid fuel vaporization. Result shows that combination of port swirl and injection timing governs the lean misfire limit and lean misfire limit envelopes remain almost the same for a given ratio regardless of engine speed. It is also found that two phase flow has some effects on lean misfire limit.

  • PDF

Optimal Gas-Flow Conditions for Stabilization of Lean-Burn Combustion (희박연소 안정화를 위한 가스유동장 조건에 관한 연구)

  • 이기형;이창식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.763-770
    • /
    • 1995
  • Gas flow characteristics within the cylinder is important factors in impoving lean combustion stability. This paper shows the effects of various flow fields generated by a swirl control valve(SCV) on combustion process in a 4-valve spark ignition engine. An impulse swirl/tumble meter was used to elucidation the steady-state flow characteristics, and a rotating grating type LDV was developed to measure the mean velocity and tunbulence intensity in relation to the crank angle. These methodologies were applied to clarify the correlation between gas flow characteristics and combustion stability at a lean air fuel ratio. An analysis of the correlation revealed the gas flow conditions required to optimize a lean-burn system.

Numerical Analysis of the Extinction and $NO_x$ Emission in Methane/Air Premixed Flame by Hydrogen Addition (메탄/공기 예혼합화염에서의 수소첨가에 의한 소염 및 $NO_x$ 발생특성에 관한 수치해석)

  • Cho, Eun-Seong;Chung, Suk-Ho;Ahn, Kook-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.1
    • /
    • pp.75-81
    • /
    • 2006
  • Lean premixed combustion is a well known method for low $NO_x$ gas turbine combustor. But lean combustion is usually accompanied by flame instability. To overcome this problem, the hydrogen ($H_2$) was added to main fuel methane to increase flammable limit. In this paper, the effects of hydrogen addition on lean premixed combustion of methane ($CH_4$) were investigated numerically. Results showed that the extinction stretch rate increases and the extinction temperature constant with relatively small amount of $H_2$ addition. The flame temperature and NO emission increase with $H_2$ addition at the same stretch rate and equivalence ratio but it could increase the range of lean extinction and extinction equivalence ratio limit. Eventually, the $H_2$ addition case showed almost same or lower NO emission than no addictive $CH_4$ case in the extinction condition.

Fuel Stratification Process in a Lean Burn Internal Combustion Engine by Using Planar Laser Induced Fluorescence (PLIF를 이용한 희박연소엔진에서의 연료 성층화에 관한 연구)

  • 정경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.7-12
    • /
    • 2003
  • Mixture formation in the cylinder of a lean bum engine has been observed by Laser Induced Fluorescence technique. XeCl laser (308nm) was used to produce a laser sheet. 3-pentanone has been added to iso-octane fuel to produce fluorescence, the intensity of which is proportional to the concentration of the fuel. The laser sheet was introduced through the piston window and the fuel distribution in the vertical plane was observed through a side window. Comparison has been made for the cases of selected fuel injection timing as 0, 360, 405, and 450 CA. For the case of 0 and 360 CA injection, uniform fuel distribution in the combustion chamber has been obtained at the ignition time which is favorable for the high load mode. And the late injection cases, 405 and 450 CA, revealed the stratified formation of rich mixture around the spark plug. That extends the lean misfire limit and reduces cyclic variation in the low load mode.