• Title/Summary/Keyword: leakage hole

Search Result 131, Processing Time 0.023 seconds

Leakage and Rotordynamic Analysis of Damper Floating Ring Seal with Round­Hole Surfaces in the High Pressure Turbo Pump (원형 단면 구멍 표면을 갖는 댐퍼 후로팅 링 실의 누설량 및 회전체 동역학적 특성 해석)

  • 하태웅;이용복;김창호
    • Tribology and Lubricants
    • /
    • v.19 no.6
    • /
    • pp.349-356
    • /
    • 2003
  • A damper floating ring seal with round hole pattern surfaces is suggested for better leakage control. The flat plate test of the round hole pattern surfaces has been performed to yield an empirical friction factor model. The exact predictions of the lock­up position of the damper floating ring, the leakage performance, and the rotordynamic coefficients of the seal are necessary to evaluate the rotordynamic performance of the turbo pump unit. The governing equations including the empirical friction factor model for round hole pattern surfaces are solved by the Fast Fourier Transform method. The lock­up position, leakage flow rate, and rotordynamic coefficients are evaluated according to the geometric parameters of the damper floating ring seal. Theoretical results show that the damper floating ring seals yield less leakage and better rotordynamic stability than the floating ring seal with a smooth surface.

External Leakage on Helmholtz Resonators (헬름홀쯔 공명기에서 외부로의 누출)

  • Lee, Iljae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.752-758
    • /
    • 2013
  • The effect of external leakage on the acoustic performance of Helmholtz resonators is experimentally and numerically investigated. The transmission loss of the Helmholtz resonator with a circular perforated hole is measured by using an impedance tube setup. The experimental results are then compared with one-dimensional analytical and three-dimensional numerical results. As the size of the hole increases, the peak of the transmission loss shifts to higher frequency, especially for the holes on the cavity. While the transmission loss is almost independent of the location of the hole on the cavity, the impact of the hole location on the neck on the transmission loss is not negligible. The results show that one-dimensional analytical method can predict the overall trends, whereas three-dimensional numerical method is necessary for more accurate predictions.

Dispersion Characteristics of Hydrogen Gas by the Effect of Leakage Hole Size in Enclosure Space (누출공 크기에 따른 밀폐공간 내 수소 가스의 확산 특성)

  • Choi, Jinwook;Li, Longnan;Park, Chul-Woo;Lee, Seong Hyuk;Kim, Daejoong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.26-35
    • /
    • 2016
  • As a potential clean energy resource, the production and consumption of hydrogen gas are expected to gradually increase, so that hydrogen related studies are also increasing. The thermal and chemical properties of hydrogen result in its high flammability; in particular, there is a high risk if leaks occur within an enclosed space. In this study, we applied the computational fluid dynamics method to conduct a numerical study on the leakage behavior of hydrogen gas and compared these numerical study results with an experimental study. The leakage hole diameter was selected as an important parameter and the hydrogen gas dispersion behavior in an enclosed space was investigated through various analytical methods. Moreover, the flammable regions were investigated as a function of the leakage time and leakage hole size. We found that the growth rate of the flammable region increases rapidly with increasing leakage hole size. We also investigated the relation between the mass flow rate and the critical time when the hydrogen gas reaches the ceiling. The analysis of the monitoring points showed that the hydrogen gas dispersion behavior is isotropic and independent of the geometry. We found that the concentration of gas in an enclosed space is affected by both the leakage flow rate and amount of gas accumulated in the enclosure.

A Study on the Correlation between Leak Hole Size, Leak Rate, and the Influence Range for Hydrochloric Acid Transport Vehicles (염산 운송차량의 누출공 크기와 누출률 및 영향범위간 상관관계 연구)

  • Jeon, Byeong-Han;Kim, Hyun-Sub
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.2
    • /
    • pp.175-181
    • /
    • 2021
  • Objectives: The correlation between the size of a leak hole, the volume of the leakage, and the range of influence was investigated for a hydrochloric acid tank-lorry. Methods: For the case of a tank-lorry chemical accident, KORA (Korea Off-site Risk Assessment Supporting Tool) was used to predict the leak rate and the range of influence according to the size of the leak hole. The correlation was studied using R. Results: As a result of analyzing the leak rate change according to the leak hole size in a 35% hydrochloric acid tank-lorry, as the size of the leak hole increased from 1 to 100 mm, the leak rate increased from 0.008 to 83.94 kg/sec, following the power function. As a result of calculating the range of influence under conditions ranging from 1 to 100 mm in size and 10 to 60 minutes of leakage time, it was found that the range spanned from a minimum of 5.4 m to a maximum of 307.9 m. As a result of multiple regression analysis using R, the quadratic function model best explained the correlation between the size of the leak hole, the leak time, and the range of influence with an adjected coefficient of determination of 0.97 and a root mean square error of 22.33. Conclusion: If a correlation database for the size of a leak hole is accumulated for various substances and under various conditions, the amount of leakage and the range of influence can easily be calculated, facilitating field response activities.

Comparison of Continuous Appositional Suture Patterns for Cystotomy Closure in Ex Vivo Swine Model

  • Sang-hun Park;Joo-Myoung Lee;Hyunjung Park;Jongtae Cheong
    • Journal of Veterinary Clinics
    • /
    • v.39 no.6
    • /
    • pp.353-359
    • /
    • 2022
  • Several suture patterns can be used for cystotomy closure, and a continuous suture pattern is the most commonly used. In this study, the fluid-tight ability and other suitabilities of continuous appositional sutures, such as the simple continuous suture pattern (SC), running suture pattern (RN), and Ford interlocking suture pattern (FI), were compared for cystotomy closure. Cystotomy closure was performed using each suture method in 10 cases of ex vivo swine bladders in each group. Suture time, leakage site, suture length, bursting pressure (BP), bursting volume (BV), and circular bursting wall tension (CBWT) were measured. Suture time and suture length were the shortest in RN and the longest in FI. Leakage occurred in two places: the incision line directly and the hole made by the suture. Leakage occurred through the incision line in 4 bladders of the RN group and 2 bladders of the FI group, but not in the SC group, and in the rest of the bladders, leakage occurred through the suture hole. The values of BP, BV, and CBWT increased in the order of FI, SC, and RN. Suture time and suture length can be considered as factors related to healing and side effects. In this study, leakage through the incision was found in a less appositional area; therefore, leakage through the hole could be considered an indicator of better apposition. Good apposition is one of the conditions required for ideal cystotomy closure. The bursting strength representing the fluid-tight ability can be expressed as the CBWT. RN is expected to be efficient and cause a small degree of foreign body reaction; however, it is expected to be less stable. FI has the greatest fluid-tightness ability, but it has been proposed that side effects due to foreign body reactions most frequently occur in FI. In conclusion, SC, which is expected to have a sufficient degree of fluid-tightness and appropriate recovery, is preferable to other continuous appositional suturing methods for cystotomy closure.

Analysis of Propagation of Negative Pressure Wave Due to Leak Through Damaged Hole in High Pressure Piping System (고압 배관망에서 배관 손상에 의한 누출 및 관내 저압확장파의 전파 특성 해석)

  • Kim, Wang-Yeun;Ha, Jong-Man;Ha, Tae-Woong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.1
    • /
    • pp.26-32
    • /
    • 2008
  • The safe operation of high pressure pipe line systems is of significant importance. Leaks due to faulty operation from the pipelines can lead to considerable product losses and to exposure of community to dangerous gases. There are several leak detection methods of pipeline network which have recently been suggested. The negative pressure wave detection technology, which has advantages of short time detection availability, accurate leaking location estimate capability and cost effective, is concentrated in this study. Theoretical analysis of the flow characteristics for leaking through a hole on the pipe wall has been performed by using Fluent 6.3, commercial CFD package. The results of 3-dimensional analysis near leaking hole confirm the occurrence of negative pressure wave, and the results of 2-dimensional analysis verify the characteristics of propagation of the wave which travels with speed equal to the speed of sound in the pipeline contents. Characteristics of leakage and pressure in a pipe with a hole have been analyzed for the various pipe and hole sizes.

Effect of tip-leakage flow on an isolated rotor of an axial compressor (축류압축기의 회전차에 관한 누설유동의 영향)

  • Yim Dongwook;Ahmed N. A.;Lee Myeongho;Milton B. E.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.619-622
    • /
    • 2002
  • It has been recognized that the flow in the blade passage of an axial turbomachinery rotor is very complex and is influenced by various flow phenomena, of which the tip leakage flow passing through the gap between rotor blade tip and casing plays a significant role. The losses produced due to the existence of the clearance have been known to be a large contributor of the rotor overall losses. Despite several experimental studies on non-rotating blade in the cascade configuration, and on actual rotating blades, the detailed nature of the complex flow phenomena associated with tip leakage, however, remains largely unresolved. Thus, a single-stage compressor test rig was built and measurements were taken at upstream and downstream of the rotor of this compressor at the aerodynamics laboratory of University of New South Wales. A five-hole probe and a hot-wire probe were used to measure mean and fluctuating flow parameters. The results show that tip leakage losses rise rapidly beyond tip gap of 0.01 Furthermore, the present project also identifies the regions in the wake behind the rotor of the axial compressor where such losses are concentrated. These results should be useful in the better design of rotors for improved performance of axial compressor.

  • PDF

Flow Measurements and Performance Analysis using a 5-Hole Pitot Tube and a Rotating Hot-Wire Probe in an Axial Flow Fan (5공 피토관 및 회전 열선 유속계에 의한 축류 홴 내부 유동장 계측 및 평가)

  • Jang, Choon-Man;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1750-1757
    • /
    • 2003
  • This paper describes the flow measurements inside the blade passage of an axial flow fan by using a rotating hot-wire probe sensor from a relative flame of reference fixed to the rotor blades. The validity of fan rotor designed by a streamline curvature equation was performed by the measurement of the three-dimensional flow upstream and downstream of the fan rotor using a 5-hole pitot tube. The vortical flow structure near the rotor tip can be clearly observed by the measurements of a relative velocity and its fluctuation on quasi-orthogonal planes to a tip leakage vortex. Larger vortical flow, which results in higher blockage in the main flow, is formed according to decrease a flow rate. The vortical flow spreads out to the 30 percent span from the rotor tip at near stall condition. In the design operating condition, the tip leakage vortex is moved downstream while the center of the vortex keeps constant in the spanwise direction. Detailed characteristics of a velocity fluctuation with relation to the vortex were also analyzed.

Three Dimensional Flow Structure under Rotating Stall in an Axial Flow Fan (주기적 선회실속이 발성하는 축류홴의 3차원 유동구조)

  • Kang, Chang Sik;Shin, You Hwan;Kim, Kwang Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.105-110
    • /
    • 2002
  • Experimental study was conducted to reveal the instability such as leakage flow and rotating stall in an axial flow fan. For this study, unsteady total pressure probe and multi-hole pressure probe were specially designed for measuring the flow field upstream and downstream of rotor. The measured pressure signal was analyzed by Single and Double Phase Locked Averaging Technique. From the result of total pressure fields at inlet and outlet of the rotor, the useful information on the structure of the stall cell in radial direction was provided. Also, detailed flow measurements were carried out with a specially designed high frequency multi-hole pressure probe, providing some insight to the leakage flow and their interation.

  • PDF

Burr Hole Drainage : Could Be Another Treatment Option for Cerebrospinal Fluid Leakage after Unidentified Dural Tear during Spinal Surgery?

  • Huh, Jisoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.53 no.1
    • /
    • pp.59-61
    • /
    • 2013
  • Authors report a rare case of acute intracranial subdural and intraventricular hemorrhage that were caused by intracranial hypotension resulted from cerebrospinal fluid leakage through an unidentified dural tear site during spinal surgery. The initial brain computed tomography image showed acute hemorrhages combined with preexisting asymptomatic chronic subdural hemorrhage. One burr hole was made over the right parietal skull to drain intracranial hemorrhages and subsequent drainage of cerebrospinal fluid induced by closure of the durotomy site. Among various methods to treat cerebrospinal fluid leakage through unidentified dural injury site, primary repair and spinal subarachnoid drainage are well known treatment options. The brain imaging study to diagnose intracranial hemorrhage should be taken before selecting the treatment method, especially for spinal subarachnoid drainage. Similar mechanism to its spinal counterpart, cranial cerebrospinal fluid drainage has not been mentioned in previous article and could be another treatment option to seal off an unidentified dural tear in particular case of drainage of intracranial hemorrhage is needed.