• Title/Summary/Keyword: leaf yield

Search Result 1,837, Processing Time 0.029 seconds

Yield Potential of Improved Tropical Japonica Rice under Temperate Environment in Korea

  • Lee, Kyu-Seong;Ko, Jae-Kwon;Kim, Jong-Seok;Lee, Jae-Kil;Shin, Hyun-Tak;Cho, Soo-Yeon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.214-220
    • /
    • 1999
  • Rice production in Korea has markedly increased during the last two decades due to newly developed high yielding varieties and improved production technology. This experiment was conducted to determine the potential of tropical japonica germplasm in enhancing the yield of temperate japonica. The yield performance of two tropical japonicas (IR 65597-29-3-2 and IR66154-52-1-2) and one temperate japonica (Dongjinbyeo) was compared at different plant densities and nitrogen levels under Korean environmental conditions. Although tropical japonicas showed low tillering habit and large panicles, they had similar leaf area index and dry weight at heading stage to Dongjinbyeo of the high tillering type indicating that there was not much difference between tropical and temperate japonica in terms of biomass production. The highest milled rice yield of 6.15 t/ha was obtained from Dongjinbyeo at a high nitrogen level with less planting density (220 kg N/ha and 30 $\times$ 15 cm). However, those of the two tropical japonicas were 5.36 t/ha at the condition of 165 kg N/ha and 30 x 10 cm planting density and 5.06 t/ha at the condition of 165kgN/ha and 15 x 15 cm planting density, respectively. Ripened grain of tropical japonicas ranged from 65 to 87%, while that Dongjinbyeo ranged from 82 to 97% under Korean conditions.

  • PDF

재식밀도와 질소시용이 오차드그라스 ( Dactylis glomerata L. ) 품종들의 분벽 소장과 수량에 미치는 영향 ( The Effect of Plant Density and Nitrogen Application on the Tillerring and the yield in cultivars of Orchargrass ( Dactylis glomerata L. ) )

  • 김정해;이호진
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 1990
  • Tillering of orchardgrass during establishment year was considered as an important factor for ground cover and forage yield. Field experiment was conducted to examine seasonal fluctuation of tiller number in three cultivars of orchardgrass; Potomac, Hall-mark, and Sumas, after transplanting with five planting density. Also, effects of plant density and nitrogen application in cultivar, Potomac were studied on tillering, forage yield and various growth characteristics in pot experiment Tillers per plant decreased with increased density and showed seasonal variations. It increased up to July, decreased during summer months, and increased again from October. Sumas had less tillers than other cultivars, especially at high density. Tillers per unit area kept high during spring. After then, there was stady decrease through summer and remained constant without affecting by planting density. Nitrogen application increased tillers per unit area in Potomac up to 20kg/10a, but decreased its tiller production at 40kg/lOa. Maximum number of tiller was obtained in the combinations of 20kg application of nitrogen with higher density than 324 plant per square meter. Forage yield increased as nitrogen application increased, while it did not respond to plant density. Forage yield had high linear correlation between LAI, leaf number with a peak at 2800 culrns. For high forage yielding, it was suggested to obtain optimum number of tillers per unit area in early season as possible, applying of adequate amount of nitrogen with relative high density depend on cultural condition.

  • PDF

Determining the Harest Time for Maximum Yield and Qualty of Ochardgrass Swards (Orchardgress 단파초지의 최고생산과 질적향상을 위한 취확적기의 결정)

  • Chang, Nam-Kee;Lee, Sung-Kyu;Kim, Sung-Ha
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.3 no.2
    • /
    • pp.86-91
    • /
    • 1983
  • The harvest schedule for maximum total yield and quality of orchardgrass sward was studied on the basis of theoretical analysis due to Chang's total yield equation. Harvesting at the 10% bloom stage of morphological development of orchardgrass swards was selected as a criterion which provided highest dry matter (DM) yield in conjunction with high and consistent levels of in vitro dry matter digestibility (IVD) and crude protein contents (CP) from harvest to harvest. However, since orchardrass after the 1st cutting do not bloom, the harvest time for the maximum yield and quality of orchardgrass swards is replaced by the three should time of the ceiling leaf area index (LAI).

  • PDF

Change of growth and yield of top part by different harvest date and number in Saururus chinensis bailley (수확시기와 횟수에 따른 삼백초 경엽의 생육 및 수량의 경시적 변화)

  • 남상영;김인재;김민자;이철희;김태수
    • Korean Journal of Plant Resources
    • /
    • v.15 no.2
    • /
    • pp.159-163
    • /
    • 2002
  • This study was carried out to investigate change of growth and yield of top part by different harvest date and number in Saururus chinensis. Top part of the first harvest date showed the most effective growth on July 16 and July 31, and that of the second harvest date was greater than that of the as first harvest date. Harvest dates up to July 31 increased yield of marketable leaf and stem, but the later Harvest date decreased yield as low as 41% .Percentage of dry mater was higher as the harvest date was delayed.

Genetic Relationship between Seed size and Leaf Size in 66 $F_2$ Populations Derived from Mating of 12 Soybean Strains (대두 12 모본의 half diallel cross로부터 생성된 66 $F_2$ 분리집단에서의 종자크기와 잎 크기에 대한 관계)

  • 정종일
    • Journal of Life Science
    • /
    • v.8 no.4
    • /
    • pp.437-442
    • /
    • 1998
  • Seed and leaf size is the important morphological traits considered by plant breeder and is the important yield components in soybean. The objective of this research was to know the relationship between seed size and leaf size in 66 $F_2$ populations derived from half diallel mating system with 12 soybean strains, representing distinct seed and leaf size. The range of seed size for 12 parents used was 6.7 to 43.8 g/100 seed. Leaf width leaf length ranged 5.7 to 8.6 cm and 9.4 to 12.9 cm, respectively. Leaf width was highly correlated with leaf length with an R square of 0.754 in the $F_2$ generation. The $F_2$ regression` coefficient indicated that leaves were, on average 1.4 times greater length than in width . Leaf size (width) was highly correlated (r.0.91) with seed size (g/100 seed) in the $F_2$ generation with an R square of 0.833. Our results indicate postive correlation within seed and leaf size is common in $F_2$ segregating populations derived from crossing with soybean. The strong liner relationship we observed between leaf size and seed size in $F_2$ segragating population is useful in that in that indirect selection for a secondary character may be superior to direct selection for the primary character.

  • PDF

Estimation of Leaf Area Using Leaf Length, Leaf width, and Lamina Length in Tomato (엽장, 엽폭, 엽신장을 이용한 토마토의 엽면적 추정)

  • Lee, Jae Myun;Jeong, Jae Yeon;Choi, Hyo Gil
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.325-331
    • /
    • 2022
  • One of the most important factors in predicting tomato growth and yield is the leaf area. Estimating leaf area accurately is the beginning of an effective tomato plant growth assessment model. To this end, this study was conducted to identify the most effective model for estimating plant leaf area through the measurement of tomato plant leaves. Leaf area (LA), leaf length (L), leaf width (W), and lamina length (La) were measured for all leaves of 5 plants at two-week intervals. The correlation between LA and tomato-leaf-independent variables showed a strong positive relationship with the formulas La × W, L × W, La + W, and L + W. For LA estimation, a linear model using the formula LA = a + b (La2 + W2) gave the most accurate estimation (R2 = 0.867, RMSE = 88.76). After examining the positions of upper, middle, and lower leaves from September to December, the coefficient of determination (R2) values for each model were 0.878, 0.726, and 0.794 respectively. The most accurate estimation came from the model that used the upper leaves of the plants. The high accuracy of the upper-leaf-based model is judged by the 50% defoliation performed by farmers after October.

Effect of Cultivation Using Plastic-Film House on Yield and Quality of Ginseng in Paddy Field (논토양에서 비닐하우스를 이용한 재배방법이 인삼의 수량 및 품질에 미치는 영향)

  • Kim, Dong Won;Kim, Jong Yeob;You, Dong Hyun;Kim, Chang Su;Kim, Hee Jun;Park, Jong Suk;Kim, Jeong Man;Choi, Dong Chil;Oh, Nam Ki
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.3
    • /
    • pp.210-216
    • /
    • 2014
  • The average and maximum temperature were $29.5^{\circ}C$ and $33.2^{\circ}C$ at 2:00 p.m. respectively, in the plastic-film house covered with shade net, and both of temperature were lower $0.6^{\circ}C$ and $1.3^{\circ}C$ than those of conventional shade. Light transmittance was 14% in the plastic-film house, while 9.9% in conventional shade during growing season from May to October. Withering time of aboveground part was on October 3rd in conventional shade with 60% of withering leaf, while it was on November 10th with 3.7% of withering leaf in the plastic-film house, about 40 days longer survival. The main disease incidence were 15% of anthracnose, 17% of leaf spot, 5% of phytophthora blight and 3% of gray mold in the conventional shade, while 0 ~ 0.1% disease incidence and 95% of emergence rate in the plastic-film house. The growth in the aboveground and underground part of ginseng was totally better, particularly characteristics affecting yield such as root length, main root length and diameter in the plastic-film house. The fresh weight was increased by 128% compared to the conventional shade and harvested roots per $3.3m^2$ were 36 roots in the conventional shade and 58 roots in the plastic-film house and futhermore yield per $3.3m^2$ was increased by 216% compared to the conventional shade. As covering materials, the rice straw in the plastic-film house was excellent. The ginsenoside contents affecting the quality of ginseng were higher in the plastic-film house indicating 0.333% of Rg1, 0.672% of Rb1, 0.730% of Rc and rate of red rusty root was less than 4.0 ~ 6.1%. Above the results, the quality of ginseng grown in the plastic-film house covered with shade net was improved than that of the conventional shade.

Estimation of Nutritive Value of Whole Crop Rice Silage and Its Effect on Milk Production Performance by Dairy Cows

  • Islam, M.R.;Ishida, M.;Ando, S.;Nishida, T.;Yoshida, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.10
    • /
    • pp.1383-1389
    • /
    • 2004
  • The nutritive value and utilization of whole crop rice silage (WCRS), Hamasari, at yellow mature stage was determined by three studies. In first study, chemical composition, in vivo digestibility and metabolizable energy (ME) content of WCRS was determined by Holstein steers. WCRS contains 6.23% CP, its digestibility is 48.4% and estimated TDN is 56.4%. Its ME content was 1.91 Mcal/kg DM. Gross energy (GE) retention (% of GE intake) in steers is only 22.7% most of which was lost through feces (44.7% of GE intake). It takes 81 minutes to chew a kg of WCRS by steers. In another study, the effect of Hamasari at yellow mature stage at three stages of lactation (early, mid and late lactation) and two levels of concentrate (40 or 60%) on voluntary intake, ME content and ME intake, milk yield and composition using lactating Holstein dairy cows were investigated. Total intake increased with the concentrate level in early and mid lactation, but was similar irrespective of concentrate level in late lactation. WCRS intake was higher with 40% concentrate level than with 60% concentrate. ME intake by cows increased with the concentrate level and WCRS in early lactating cows with 40% concentrate can support only 90% of the ME requirement. Milk production in accordance with ME intake increased with the increase in concentrate level in early and mid lactating cows but was similar in late lactating cows irrespective of concentrate level. Fat and protein percent of milk in mid and late lactating cows were higher with for 60% concentrate than 40%, but reverse was in early lactating cows. Solids-not-fat was higher with for 60% concentrate than 40% concentrate. Finally in situ degradability of botanical fractions such as leaf, stem, head and whole WCRS, Hamasari at yellow mature stage was incubated from 0 to 96 h in Holstein steers to determine DM and N degradability characteristics of botanical fractions and whole WCRS. Both DM and N solubility, rate of degradation and effective degradability of leaf of silage was lower, but slowly degradable fraction was higher compared to stem and head. Solubility of DM and N of stem was higher than other fractions. The 48 h degradability, effective degradability and rate of degradation of leaf were always lower than stem or head. In conclusion, voluntary intake of silage ranged from 5 to 12 kg/d and was higher with low levels of concentrate, but milk yield was higher with high levels of concentrate. Fat corrected milk yield ranged from 19 to 37 kg per day. For consistency of milk, early lactating cows should not be allowed more than 40% whole crop rice silage in the diet, but late lactating cows may be allowed 60% whole crop rice silage.

Effects of Nitrogen Level on Intercropping Cultivation of Sorghum $\times$ Sudangrass Hybrid and Soybean (질소시비 수준이 수수 $\times$ 수단그라스 교잡종과 대두와의 간작재배에 미치는 영향)

  • 이상무;육완방;전병태
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.17 no.2
    • /
    • pp.167-176
    • /
    • 1997
  • A field experiment was conducted in Chungiu and Jungwon to evaluate growth characteristics, root development, dry matter yield, crude protein yield and palatability according to nitrogen fertilizer level at intercropping cultivation of sorghum $\times$ sudangrass hybrid(hereinafier referred as SSH) and soybean. Nitrogen level was six treatment of Okg, 30kg 60kg, 90kg 120kg, and 150kg per hectare, and cutting date (sorghum $\times$ sudangrass and soybean) was july 28. 1. In the SSH, plant length was increased with increasing nitrogen fertilizer from 0kg/ha to 120kg/ha, but 150kgha treatment was decreased cornpared to 120kg/ha treatment. In the soybean, plant length did not show difference among 0kg, 30kg 60kg, and 90kg per hectare, but 120kg and 150kgfha treatment was on the contrary short. In the SSH, leaf length, leaf width and leaf number were the highest in 120kg/ha treatment, but soybean showed multifarious. 2. Stem diameter of SSH was increased with increasing nitrogen fertilizer. But soybean was thick from 0kg/ha treatment to 60kg/ha treatment, while above 90kg/ha treatment was on the contrary thin. Stem of SSH was hard with increasing nitrogen fertilizer, but soybean was soft with increasing nitrogen fertilizer. Root weight (Dry matter) of SSH was increased with increasing nitrogen fertilizer. On the contrary, soybean was decreased with increasing nitrogen fertilizer. 3. In the dairy cattle and Korean native cattle, palatability according to nitrogen fertilizer was the highest at 90kgha treatment, while 120kgha treatment and 150kgha treatment was the lowest. But in the deer, 30kg/ha treatment of low nitrogen fertilizer was the highest in palatability. 4. Nitrogen content of root of SSH was increased with increasing nitrogen fertilizer(P<0.01). But in soybean, 30kg and 60kg/ha treatment were higher than 0kg, 90kg, 120kg and 150kg/ha treatment(P<0.01). Total niwogen content of soil were high at 90kg 120kg 150kgha trea~ment(P<0.01). 5. Dry matter yield was high at the 90kg 120kg and 150kgha treatment as range from 15, 262kg/ha to 15, 614kg/ha without significant difference among those, but Okgha treatment was the lowest as 11, 183kg/ha (PC 0.05). Protein content of SSH was the highest at 90kg/ha treatment as 8.3 percentage. Soybean was highest at 60kgha treatment as 22.9 percentage. Protein yield was the highest at 90kg/ha treatment as 1, 547.6kg/ha, but Okgha treatment was the lowest as 1, 022.8kg/ha (P<0.01).

  • PDF

Studies on insecticidal activity and synthesis of Bis (trichlorophenoxy) ethane (Bis(trichlorophenoxy) ethane(BTPE)의 합성 및 살충효력에 관한 연구(I))

  • Kim C. S.;Kim H. W.;Kim M. Y.;Kang S. W.;Lee D. S.;Lee E. S.
    • Korean journal of applied entomology
    • /
    • v.4
    • /
    • pp.47-50
    • /
    • 1965
  • Many of the chlorophenol derivatives are widely used as insecticides, herbicides and plant growth regulators. The function and use of these chemicals would be different according to the number of chlorine and their chemical structures. It was reported in this article that 1) Bis(trichlorophenoxy) ethane was synthesized with 2 mol-trichlorophenol and 1 moi-dibromoethane in 2 moi-Sodium hydroxide alcohol solution, and 3) the insecticidal activity of Bis(trichlorophenoxy) ethane was compared with Phenkapton, Tedion V-18, BHC, and DDT, on Citrus red mite, Bombix mori (Silk worm), and Daikon leaf beetle(Phaedon brassicae) 3) The toxicity of Bis(2, 4, 5-trichlorophenoxy) ethane and Bis(2, 4, 5-trichlorophenoxy) ethane was studied on mice. The following results were obtained. 1) Yield of Bis(2, 4, 5-trichlorophenoxy) ethane, $50.06\%$, m.p. $157-159^{\circ}C$, and yield of Bis(2,4, 6-trichlorophenoxy) ethane, $32.60\%$, m.p. $162-163^{\circ}C$. 2) Insecticidal activity of Bis(2, 4, 5-trichlorophenoxy) ethane to Citrus red mite is stronger than that of Tedion V-18, and weaker than that of Phenkapton. 3) Insecticidal activity of Bis(2, 4, 5-trichlorophenoxy) ethane to Bombix mori is weaker than those of BHC and DDT. 4) Insecticidal activity of Bis(2. 4, 5-trichlorophenoxy) ethane to Daikon leaf beetle proved to be ineffective. 5) Five rams of Bis(2, 4, 5-trichlorophenoxy) ethane and Bis(2, 4, 6-trichlorophenoxy) ethane pet kg of body weight respectively were given to mice orally, and none of the mouse was killed by it after a period of 72 hours. Therefore it seems that there is almost no toxicity.

  • PDF