• Title/Summary/Keyword: leaf conductance

Search Result 125, Processing Time 0.029 seconds

Effects of Light, Temperature, Water Changes on Physiological Responses of Kalopanax pictus Leaves(V) - Physiological Responses by the Changes of Leaf Water Potential - (광, 온도, 수분 변화에 따른 음나무 엽의 생리반응(V) - 잎의 수분 포텐셜 변화에 따른 생리반응 -)

  • Han, Sang-Sup;Jeon, Doo-Sik;Sim, Joo-Suk;Jeon, Seong-Ryeol
    • Journal of Forest and Environmental Science
    • /
    • v.22 no.1
    • /
    • pp.76-82
    • /
    • 2006
  • 1. This stuty was investigated in 6-year-old Kalopanax leaves in plantation forest. 2. The decrease in net photosynthesis rate began at -0.80 MPa water potential, and then approached zero at -2.50 MPa. The relative net photosynthesis rate which is 50% occurred at -1.70 MPa. The stomatal conductance increased temporarily until -1.00 MPa, and then rapidly decreased. At -2.50 MPa, the relative stomatal conductance was 7% of maximum value. 3. The stomatal transpiration rate increased temporarily until -1.00 MPa, and then rapidly decreased. At -2.50 MPa, the relative stomatal transpiration rate was about 17% of maximum rate. The water use efficiency rapidly decreased with decreasing water potential, and then approached about zero at -2.50 MPa. 4. With decreasing leaf water potential, the $CO_2$ content ratio. $C_i/C_a$ in intercellar rapidly increased. The vapor pressure deficit, VPD gradually increased until -2.00 MPa, and then rapidly increased.

  • PDF

Effects on Growth, Photosynthesis and Pigment Contents of Liriodendron tulipifera under Elevated Temperature and Drought (온도 증가와 건조 스트레스가 백합나무의 생장, 광합성 및 광색소 함량에 미치는 영향)

  • Kim, Gil Nam;Han, Sim-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.1
    • /
    • pp.75-84
    • /
    • 2015
  • This study was conducted to investigate the effects of high temperature and drought on growth performance, photosynthetic parameters and photosynthetic pigment contents of Liriodendron tulipifera L. seedlings. The seedlings were grown in controlled-environment growth chambers with combinations of four temperature ($-3^{\circ}C$, $0^{\circ}C$, $+3^{\circ}C$, $+6^{\circ}C$; based on the monthly average for 30 years in Korea) and two water status (control, drought). Temperature rise increased growth, total dry weight and leaf area in all water status. Also photosynthetic rate, dark respiration, stomatal conductance and transpiration rate increased with increasing temperature. In contrast, growth and photosynthetic parameters of L. tulipifera seedlings were lower in $-3^{\circ}C$ than $0^{\circ}C$. But temperature rise decreased water use efficiency in all water status. Temperature rise increased photosynthetic pigment contents of leaf. Also chlorophyll a/b ratio increased with increasing temperature. In conclusion, the elevated temperature lead to causes growth increase through the increase of energy production by higher photosynthetic rate during a growth period of L. tulipifera seedlings.

Effects of Petroleum Spray Oil on Photosynthesis Characteristics in Citrus Leaves (Petroleum Spray Oil 살포가 감귤 잎의 광합성관련 특성에 미치는 영향)

  • Kang, Si-Yong;Kim, Pan-Gi;Park, Jin-Hee;Riu, Key-Zung
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.3
    • /
    • pp.186-191
    • /
    • 2001
  • Recently, petroleum spray oil(PSO) has been used to control key pests in integrated pest management (IPM) of citrus and other orchards in Australia and USA. In order to clarify the influences of a newly developed PSO (D-C Tron $Plus^{(R)}$) on citrus leaves, 0.33% or 1.0% of PSO were sprayed to potted 4-year-old citrus trees under some kinds of condition, and then the changes of photosynthesis, transpiration, stomatal conductance and chlorophyll fluorescence(Fv/Fm) were determined. When sprayed with 1.0% PSO, the photosynthetic rate, transpiration and stomatal conductance of citrus leaves were decreased by 20%, and then recovered in 20 days after treatment (DAT), while there were little influences by the spray of 0.33% PSO. The value of Fv/Fm decreased more under the $34/24^{\circ}C$ temperature condition than that of under the $30/20^{\circ}C$ and $28/16^{\circ}C$ condition. The high temperature ($50^{\circ}C$ for 10 hours)-treated trees sprayed with PSO 1.0% or PSO 1.0% plus dithianon 1/2000 dilution showed not only the increase of rate in dropped leaf but also the reduced photosynthesis and Fv/Fm compared with $30/20^{\circ}C$ temperature-treated ones. From the results of this study, the spray of 1.0% PSO can inhibit the physiological activities in citrus leaf, particularly under high temperature condition after spray or the mixing-spray with a fungicide (dithianon WP, 75%).

  • PDF

Effect of Calcium Chloride (CaCl2) on the Characteristics of Photosynthetic Apparatus, Stomatal Conductance, and Fluorescence Image of the Leaves of Cornus kousa (염화칼슘 처리가 산딸나무 잎의 광합성 기구, 기공전도도 및 형광이미지 특성에 미치는 영향)

  • Sung, Joo-Han;Je, Sun-Mi;Kim, Sun-Hee;Kim, Young-Kul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.143-150
    • /
    • 2009
  • Deicing salt is used to melt snow and ice on the road for traffic safety during the winter season, which accumulates in the roadside vegetation and induces visible injuries. The damage may accelerate particularly when it coincides with early spring leaf out. In order to better understand the response mechanisms, C. kousa (3-year-old) was irrigated twice prior to leaf bud in a rhizosphere with solutions of 0.5, 1.0, and 3.0% calcium chloride ($CaCl_2$) concentration, that were made by using an industrial $CaCl_2$ reagent practical deicing material in Seoul. Physiological traits of the mature leaves were progressively reduced by $CaCl_2$ treatment, resulting in reductions of total chlorophyll contents, chlorophyll a:b, photosynthetic rate, quantum yield, stomatal conductance, $F_V/F_M$, and NPQ. On the contrary, light compensation point and dark respiration were increased at high $CaCl_2$ concentration. A decrease in intercellular $CO_2$ concentration by stomatal closure first resulted in a reduced photosynthetic rate and then was accompanied by low substance metabolic rates and photochemical damage. Based on the reduction of physiological activities at all treatments ($CaCl_2$ 0.5%, 1.0%, and 3.0%), C. kousa was determined as one of the sensitive species to $CaCl_2$.

Studies on the Shade Tolerance, Light Requirement, and Water Relations of Economic Tree Species(I) - Changes of Hydraulic Conductance of Six Deciduous Hardwood Species Subjected to Artificial Shade Treatments - (주요경제수종(主要經濟樹種)의 내음성(耐陰性) 및 광선요구도(光線要求度)와 수분특성(水分特性)에 관한 연구(硏究)(I) - 인공피음처리(人工被陰處理)를 실시(實施)한 낙엽활엽수(落葉闊葉樹) 6종(種)의 수분통도성(水分通道性) 변화(變化) -)

  • Kwon, Ki Won;Choi, Jeong Ho;Chung, Jin Chul
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.3
    • /
    • pp.292-298
    • /
    • 1999
  • Huber value and leaf specific conductivity were investigated for determining the hydraulic conductance of six deciduous hardwood species subjected to five levels of artificial shade treatments. Huber values measured in full sun were in the ranges of $1.5{\sim}9.1mm^2/dm^2$, $1.3{\sim}2.6mm^2/dm^2$, $1.5{\sim}5.3mm^2/dm^2$ in June, July, and September, respectively in the first year. The values generally decreased with increasing the shading in most of the species studied. Because of early defoliation in September, most of the values measured were also higher in September than in July. Huber values were quite different between those of the first year and those of the second year in most of the species studied, but the seasonal variation of Huber values and shading effects to the values seemed to be similar between the first and the second years. The values of leaf specific conductivity(LSC) measured in Betula platyphylla var. japonica. B. schmidtii, Zelkova serrata, Acer mono for 2 years were in the range of $4.0{\sim}80.0{\mu}{\ell}/dm^2$ by season and by shading treatment. But in Ligustrum obtusifolium and Prunus sargentii, the values were in the ranges of $4.0{\sim}280.0{\mu}{\ell}/dm^2$ and $8.0{\sim}120{\mu}{\ell}/dm^2$, respectively with having quite different values compared with those of the above species. Seasonal variation of LSC values was more or less irregular by species and by treatment year, but the LSC values of B. platyphylla vac. japonica, B. schmidtii, and P. sargentii in the first year and also those of Z. serrata and P. sargentii in the second year were mostly higher in September than in July. The LSC values seemed to be generally decreased with increasing the artificial shading in all of the species studied.

  • PDF

Analysis of Relationship between Underground Part Environment Control and Growth and Yield of Sweet Pepper in Greenhouses as Affected by Covering Materials (피복재 종류에 따른 착색단고추 재배온실의 지하부 환경 관리와 생육 및 생산성과의 관계 분석)

  • Kim, Ho-Cheol;Park, Su-Min;Lee, Jeong-Hyun;Kang, Jong-Goo;Bae, Jong-Hyang
    • Journal of Bio-Environment Control
    • /
    • v.20 no.1
    • /
    • pp.8-13
    • /
    • 2011
  • This research was carried out to investigate relationship between underground part environment control and growth or yield of sweet pepper in greenhouse as affected by covering materials. Daily amount of applied nutrient solution for research period in the greenhouse of plasticfilm house was more 1.6 times than that in glass house. But daily absorptance rate of nutrient solution and specific electrical conductance of rockwool between two greenhouses were not different in the range of 71.3-73.3% and $4.17{\sim}4.23dS{\cdot}m^{-1}$ respectively. Leaf area of sweet pepper, in leaf growth characteristics in two greenhouses, were $123.0cm^2$/leaf (in glass house) and $119.5cm^2$/leaf (in plasticfilm house), but the another (fresh and dry weight, dry matter) were not different. But weekly yield per square meter in glass house was more 1.3 times than that in plasticfilm house as $850g{\cdot}m^{-2}$ and $650g{\cdot}m^{-2}$, respectively. Effect of slab EC and absorptance rate of nutrient solution on leaf growth characteristics and yield between two greenhouses were not different. The results show when sweet pepper is cultured in greenhouse as affected by covering materials and above ground part environment, the plant growth and yield are little affected by underground part environment.

Experimental Studies of the Short-Term Fluctuations of Net Photosynthesis Rate of Norway Spruce Needles under Field Conditions (야외조건하(野外條件下)에서 독일가문비(Picea abies Karst) 침엽(針葉)의 순(純) 광합성률(光合成率)의 단기(短期) 변화(變化)에 대한 실험적(實驗的) 연구(硏究))

  • Bolondinsky, V.;Oltchev, A.;Jin, Hyun O.;Joo, Yeong Teuk;Chung, Dong Jun
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.1
    • /
    • pp.38-46
    • /
    • 1999
  • Canopy structure conductances of a Norway spruce forest in the Solling Hills(Central Germany) and Central Forest Biosphere Reserve(320km to the north-west from Moscow) were derived from LE(latent heat flux) and H(sensible heat flux) fluxes measured(by Eddy correlation technique and energy balance method) and modelled(by one dimensional non-steady-state) SVAT(soil-vegetation-atmosphere-transfer) model(SLODSVAT) using a rearranged Penman-Monteith equation("Big-leaf" approximation) during June 1996. They were compared with canopy stomatal conductances estimated by consecutive intergrating the stomatal conductance of individual needles over the whole canopy("bottom-up" approach) using SLODSVAT model. The result indicate a significant difference between the canopy surface conductances derived from measured and modelled fluxes("top-down" approach) and the stomatal conductances modelled by the SLODSVAT("bottom-up" approach). This difference was influenced by some nonphysiological factors within the forest canopy(e.g. aerodynamic and boundary layer resistances, radiation budget, evapotranspiration from the forest understorey). In general, canopy surface conductances derived from measured and modelled fluxes exceeded canopy stomatal conductance during the whole modelled period, The contribution of the understorey's evapotranspiration to the total forest evapotranspiration was small (up to 5-9% of the total LE flux) and was not depended on total radiation balance of forest canopy. Ignoring contribution of the understorey's evapotranspiration resulted in an overestimation of the canopy surface conductance for a spruce forest up to 2mm/s(about 10-15%).

  • PDF

Growth Characteristics and Photosynthesis of Soybean Seedling to NaCl stress in Sand Culture (콩의 유묘기에 있어서 NaCl Stress에 의한 생육특성과 광합성 반응)

  • Cho, Jin-Woong;Kim, Choong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.4
    • /
    • pp.361-365
    • /
    • 1999
  • This atudy was conducted to determine the growth characteristics and photosynthesis of soybean (Glycine max L. cv. Keumjongkongl) 30 day old seedling to 100mM NaCl concentration containing 1/2 Hoagland`s nutrient solution in sand culture. The nodule formation of root is not found perfectly with NaCl stress. The leaf dry matter weight (g/plant) of stressed plant is more reduction in 77% to control than any other characters. The water content (%) is tend to increase but water potential (MPa) is tend to decrease at NaCl stress. The chlorophyll content (SPAD) is tend to increase at growing leaf age of control but decrease at NaCl stress. The photosynthesis, stomatal conductance and transpiration are tend to decrease sharply at NaCl stress.

  • PDF

Efficacy of Uniconazole as a Phytoprotectant Against $SO_2$ Injury in Snap Bean (강남콩에 대한 $SO_2$ 피해경감제로서 uniconazole의 효과에 관한 연구)

  • ;Donald T. Krizek;Roman M. Mirecki;Edward H. Lee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.8 no.1
    • /
    • pp.13-19
    • /
    • 1992
  • This study was conducted to determine the efficacy of using uniconazole,[(E)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazole-1-yl)-1-penten-3-ol)] as a phytoprotectant against $SO_2$ injury in snap been (Phaseolus vulgaris L. 'Strike'). Thirteen days prior to $SO_2$ fumigation, plants were given a 100 ml soil drench of uniconazole solution at concentrations of 0.02, 0.10, 0.25 and 0.50 mg/pot. All four uniconazole concentrations were significantly effective in providing protection against $SO_2$ exposure(3 h at 1.5 ppm), but uniconazole treatment above 0.02 mg/pot severely reduced stem elongation, leaf enlargement, flowering date and pod number and weight. Uniconazole treatment had little or no effect on stomatal conductance but reduced transpiration rate on a whole plant basis by nearly 40%. This may reflect an alteration in canopy structure by reducing stem elongation and leaf enlargement. Although uniconazole did not increase the activities of superoxide dismutase(SOD) and peroxidase(POD) in non-$SO_2$-fumigated plants, it significantly increased those enzyme activities in $SO_2$-fumigated plants. Chlorophyll concentration on the basis of unit area was increased 50-60% by uniconazole. However, the difference was not detected on the basis of dry weight. $SO_2$ increased variable chlorophyll fluorescence (Fv) 48% after 1.5 h of exposure in non-uniconazole treated plants but decreased Fv in the plants after 3 h of exposure. By appliing uniconazole, it was possible to maintain high Fv values in the latter group of plants. These results suggest that the phytoprotective effects of uniconazole are related to its growth-retarding properties as an anti-gibberellin as well as the increase of activites of free radical scavengers such as SOD and POD.

  • PDF

Effect of Wind Velocity on Photosynthesis, Sap Flux, and Damage of Leaves in Apple Trees (풍속이 사과나무의 광합성 특성과 수액이동 및 엽손상에 미치는 영향)

  • Yim, Ji Hye;Choi, Young Min;Choi, Dong Geun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.2
    • /
    • pp.131-136
    • /
    • 2014
  • This study was carried out to determine the effects of wind speed on physiological responses in 'Fuji' apple (Malus pumila Miller). Two levels of wind blowing (3 and $5m{\cdot}s^{-1}$) were produced by large electric fans. Photosynthetic rate was reduced by one-way wind blowing treatment at $5m{\cdot}s^{-1}$, compared to the mild wind control, and this reduction was more obvious with stronger wind and increasing duration of wind application. The reduction in photosynthesis by the wind treatments was correlated with that in the proportion of opened stomates and stomatal conductance. The one-way wind treatment at $5m{\cdot}s^{-1}$ caused a leaf browning and leaf fall, and this negative effect became more serious with increasing time of exposure to the wind treatments. The sap flux through stem increased in all wind treatments compared to the natural mild wind.