• Title/Summary/Keyword: leaf RWC

Search Result 18, Processing Time 0.034 seconds

Relationship between Drought-Tolerance and Physiological Parameters in Korean Barley Genotypes (보리 품종의 한발저항성과 생리적 지표와의 상관)

  • 이변우;부금동;백남천;김정곤
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.6
    • /
    • pp.516-526
    • /
    • 2003
  • Thirty-six barley varieties including Korean modern and local varieties were tested for drought-tolerance in the field of plastic rain shelter, Drought treatment was initiated at initial tillering stage (March 27, 2002) by withholding irrigation and lasted until harvest. Soil water potential maintained at around -0.05㎫ in the control plot and varied from -0.05㎫ (at the initial stage of drought treatment) to -0.29㎫ in the drought treatment plot. At forty days after drought treatment, relative water content (RWC), osmotic potential (OP), osmotic adjustment (OA), and $^{13}\textrm{C}$ discrimination ($\Delta$) were measured and then plants were sampled for leaf area index (LAI) and dry weight (DW). Barley was harvested at maturity for determining DW, grain yield, 1000 grains weight and number of spikelet. The tested varieties revealed wide spectrum of drought tolerance. Dongbori-1, Chalbori, Changyeongjaerae, Samdobori and Weolseong 87-31 showed strong drought-tolerance while Songhagbori and Suwonmaeg360 showed weak drought-tolerance. The drought injury indexes (drought/control ratio) of DW and yield revealed significant positive correlation with leaf RWC in drought treatment plot and $\Delta$ in the control plot, but obvious negative correlation with leaf OP and OA under drought condition. In addition, all the drought indexes of OP, $\Delta$ and RWC showed obvious positive correlation with the drought injury indexes of DW, 1000 grain weight and yield. Thus, OP and RWC under drought condition and $\Delta$ under well-watered condition would be used as the evaluation criteria for drought- tolerance of barley genotypes. However, further investigation is needed for the relationship between $\Delta$ and drought-tolerance as the other reports were not consistent with our result.

Water Deficit in Salt- and Drought- stressed Rice (Oryza sativa L.) Seedlings (염과 건조처리에 따른 벼 유묘의 수분결핍)

  • Kang, Dong-Jin;Ishii, Ryuichi;Lee, In-Jung
    • Current Research on Agriculture and Life Sciences
    • /
    • v.21
    • /
    • pp.1-9
    • /
    • 2003
  • Plants are often subjected to periods of soil and atmospheric water deficit during their life cycle. To find critical levels for identification of tolerant rice variety to salt- and drought-stresses, we investigated the water deficiency in the leaf of a Dongjinbyeo (DJ) cultivar, identified as intolerant variety, subjected to NaCl- and Polyethylene glycol 6000 (PEG)- treatments. The relative water content and water potential in leaf of DJ plant sharply declined along the high concentration and time after treatment in NaCl- and PEG-treated rice plants. To elucidate the method of simple screening of tolerant variety to salt- and drought-stresses, we examined the relationship between relative water content and water potential of leaves in NaCl- and PEG-treated rice plants. The relationship between relative water content and water potential in leaf of DJ plant showed the highest correlation in 80 mM NaCl-treatment, and showed high correlation only 8% PEG treatment. These results indicate that the critical level of salt stress for screening of tolerant rice was 80 mM NaCl at 48 h after NaCl treatment, and the critical concentration of drought stress for screening of tolerant rice was 8% PEG at 96 h after PEG treatment.

  • PDF

Changes in Physiological Characteristics of Barley Genotypes under Drought Stress (한발저항성 정도가 다른 보리 품종들의 한발처리에 따른 생리적 특성변화)

  • 이변우;부금동;백남천;김정곤
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.6
    • /
    • pp.506-515
    • /
    • 2003
  • Six barley varieties that showed different degree of drought tolerance were grown with and without drought stress treatment (control), and investigated for the temporal changes in growth and several physiological traits after drought treatment. Soil water potential was -0.05 ㎫ at the initial stage of drought treatment and dropped to -0.29 ㎫ at 19 days after withholding irrigation. Soil water potential (SWP) maintained at -0.05 ㎫ in the control. The dry weight (DW) under the drought treatment were reduced compared to the control as follows: Dicktoo-S (short awn), 69% ; Dicktoo-L (long awn), 70%; Dicktoo-T (tetra), 86%; Dongbori-1, 69%; Suwonssalbori-365, 55% and Tapgolbori, ,37%. Dicktoo lines and Dongbori-1 were more tolerant than Suwonssalbori-365 and Tapgolbori. Leaf relative water contents (RWC) and leaf water potential (LWP) decreased obviously under the drought condition, the decrease being greater especially in the less drought-tolerant barley genotypes. Dongbori-1 and Dicktoo-L in drought treatment showed net photosynthesis of 38% and 17% compared to the control, respectively, and the other four genotypes much lower photosynthesis of 1.1% to 7.0%. Stomatal conductance, mesophyll conductance, and the photochemical efficiency (Fv/Fm) of PS II were reduced by drought treatment, the reduction being greater in drought-sensitive genotypes. The drought-tolerant genotypes had greater osmotic adjustment (OA) capacity under water stress. Thus, the decrease of RWC and LWP was lower and the turgor pressure conservation capacity was higher under water stress in drought-tolerant genotypes. Drought-tolerant genotypes showed less decrease of photosynthesis because stomatal conductance, mesophyll conductance and the ratio (Fv/Fm) of the variable to maximal fluorescence of drought-resistant genotype was decreased less in the drought stress condition. In conclusion, the drought-tolerant genotypes had better water conservation capacity through efficient OA, and this led to the lower decrease of photosynthesis and growth in water stress condition.

Water Relations Parameters of Heracleum moellendorffii Hance Obtained from Pressure-Volume Curves (P-V 곡선법을 활용한 어수리의 수분특성 분석)

  • Lee, K.C.;Kwon, Y.H.;Lee, K.M.;Han, S.K.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.19 no.1
    • /
    • pp.91-97
    • /
    • 2017
  • This study was carried out to establish a proper cultivation site and to diagnose the drought tolerance of Heracleum moellendorffii leaves by using pressure-volume curves. As a result of analysing data measured, the leaf of H. moellendorffii showed the osmotic pressure at full turgor (Ψosat) was -1.0MPa, and that at incipient plasmolysis (Ψotlp) -1.2MPa. Then, the value of maximum bulk modulus of elasticity Emax was 28MPa, showing the sightly strong drought tolerance of H. moellendorffii. Furthermore, the values of relative water contents RWCtlp and RWC* were above 88%, showing that the function of osmoregulation is somewhat better. Thus, responses to water relations such as Ψosat, Ψotlp, Emax, RWCtlp and RWC* of H. moellendorffii showed it's slightly high drought tolerance property.

Changes in Root Water Uptake and Chlorophyll Fluorescence of Rice (Oryza sativa L. cv. Dongjin) Seedling under NaCl Stress (NaCl 스트레스에 따른 벼 유식물의 뿌리 수분흡수와 엽록소형광의 변화)

  • Chun, Hyun-Sik
    • Journal of Life Science
    • /
    • v.18 no.2
    • /
    • pp.154-161
    • /
    • 2008
  • The physiological and photochemical responses of rice seedling to NaCl stress were investigated through measuring leaf relative water content (RWC), root water uptake and chlorophyll fluorescence. When plants were exposed to increased salinity stress, the visual symptoms of injury were significant at ${\geq}$500 mM NaCl concentration for 4 and 5 day stress periods. The differences in Fv/Fm between control treatment and plants treated with 500 mM and 1,000 mM NaCl were evident after 5 day and 4 day, respectively, whereas in root water uptake its effect was observed at 500 mM and 1,000 mM NaCl at 2 day of salt-stressed periods. Leaf RWC in salt-stressed plants decreased gradually with increasing salinity in exogenous solution and duration of salt stress, and these decrease showed leaf RWC of 58-68% atduration over 2 day stress of 1,000 mM NaCl treatment and 88% at 1 day stress. NaCl stress led to a significant inhibition of the light-induced greening in etiolated rice plants, especially in 4 and 5 day salt-stressed plants, which linearly decreased with NaCl concentration ($R^2$=0.812 and 0.918, respectively). The effects of NaCl stress in rice seedlings indicate that water uptake in root is more sensitive to increasing NaCl concentration and stress duration than Fv /Fm in leaves compared with the same NaCl concentration.

Genotypic Variation in Leaf Water Status of Soybean

  • Jin, Yong-Moon;Lee, Hong-Suk;Lee, Suk-Ha;Kwon, Yong-Woong;Im, Jeong-Nam
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.1
    • /
    • pp.55-58
    • /
    • 1999
  • Plant water status during growth is directly and indirectly associated with seed yield. The objective of the present study was to determine the genotypic differences in leaf water characteristics at an early growth stage of soybean [Glycine max (L.) Merrill] plants through the pressure-bomb technique. Measurements of water potential as well as relative water content (RWC) were made at the third leaf from the fully-expanded top leaf of eight different soybean genotypes grown for 31 to 35 days after field emergence. On the basis of the modified exponential model, pressure-volume (PV) curves were fitted well ($R^2$=0.92** to 0.99** for the curvi-linear region and R=0.67** to 0.96** for the linear region), indicating that a segmented model using PROC NLIN of SAS could be used effectively to estimate the leaf water characteristics. The regression analysis for the pressure-volume (PV) curve revealed genotypic variation in the solute potential at saturation (Ψ$_{s,sat}$ :-10.7 to -14.8 bar), solute potential at incipient plasmolysis (Ψ$_{s,ip}$ : -14.3 to -18.3 bar), RWC at incipient plasmolysis (RW $C_{ip}$ : 83.3 to 91.7%), high integrated turgor pressure from saturation to plasmolysis ( $_1$$^{b}$ : 0.39 to 0.81), and maximum volumetric modulus of elasticity ($\varepsilon$$_{max}$ : 150 to 445 bar).).

  • PDF

Seasonal Changes of Water Relations Parameters of the Korean Mistletoe (Viscum album var. coloratum) Leaves (겨우살이 엽의 계절별 수분특성)

  • Lee, Kyeong-Cheol;Kim, Cheol-Woo;Yi, Jae-Seon;Han, Sang-Sup
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.461-468
    • /
    • 2012
  • This study was conducted to study the seasonal changes of relative water relations parameters by pressure-volume curves of Korean mistletoe (Viscum album var. coloratum) leaves for understanding ecological characteristics. In growing season, the osmotic potentials at full turgor (${\Psi}_o^{sat}$) and at incipient plasmolysis (${\Psi}_o^{tlp}$) decreased, while increased the maximum bulk elastic modulus of the cell wall ($E_{max}$) and relavive water content ($RWC^{tlp}$). Korean mistletoe in Quercus variabilis and Korean mistletoe in Quercus mongolica in November showed best maximum perssure potential (${\Psi}_{P,\;max}$). Pressure potential (${\Psi}_P$) and water potential (${\Psi}_L$) in Korean mistletoe in Quercus variabilis were rapidly decreased with decreasing of relative water content. The values of $RWC^{tlp}$ in November were all above 84% showing that the function of osmoregulation is somewhat better, and symplastic water content (Vo/DW) and maximum water content (Vt/DW) were variable seasonally. Thus, responses to water relations of Korean mistletoe in Quercus variabilis and Korean mistletoe in Quercus mongolica such as ${\Psi}_o^{sat},\;{\Psi}_o^{tlp},\;E_{max},\;{\Psi}_{P,\;max},\;RWC^{tlp}$ showed increaing drought tolerance with increasing of leaf aging.

Selection Indices to Identify Drought-tolerance and Growth Characteristics of the Selected Korean Native Plants (자생식물로부터 내건성 식물의 최적인자 선발과 생육특성)

  • Im, Hyeon Jeong;Song, Hyeon Jin;Jeong, Mi Jin;Seo, Yeong Rong;Kim, Hak Gon;Park, Dong Jin;Yang, Woo Hyung;Kim, Yong Duck;Choi, Myung Suk
    • Journal of agriculture & life science
    • /
    • v.50 no.2
    • /
    • pp.73-82
    • /
    • 2016
  • Best drought tolerance index was determined through statistics analysis and growth appearance of drought tolerant plants was determined by cultivation in pot and sloping land. For determination of best drought tolerant indicators, RD(Resistant dry days), LD(Leaf area), UTR(Unit transpiration), RWC(Relative water content), RWL(Relative water loss), LA(Leaf area), SN(Stoma unmber) and SA(Stoma area) were carried out by correlation and PCA analysis. RWL and UTR were affected on plant drought tolerance according to comparison among six indices for resistant dry days. The PCs axes separated SA, LA, RD and RWC and SN. UTR was negatively correlated with SA, RWL were also negatively correlated with RWC and SN. RWL and UTR were proved best selection indicator for the selection of drought tolerant species. Ulmus parvifolia, Bidens bipinnata, Patrinia villosa, Kummerowia striata, Arundinella hirta, Artemisia gmelini etc. were selected drought tolerant plants. Shoot growth appearance of drought resistant plants was differed pot and sloping land. Shoot growth and leaf number was no significant differences between the pot and sloping land. However, root growth of drought tolerant plants was all the difference between two cultivation. T/R ratio of drought tolerant plants was also found a big difference. T/R ratio of drought tolerant plants in sloping land was lower than that of pot. These results will be served efficiently plant breeding.

Physiological Responses of Warm-Season Turfgrasses under Deficit Irrigation (소량관수로 인한 난지형 잔디의 생리적 반응)

  • Lee, Joon-Hee;Trenholm, Laurie. E.;Unruh, J. Bryan
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.1
    • /
    • pp.9-22
    • /
    • 2009
  • Due to increasing concerns over issues with both water quantity and quality for turfgrass use, research was conducted to determine the response of five warm-season turfgrasses to deficit irrigation and to gain a better understanding of relative drought tolerance. St. Augustinegrass(Stenotaphrum secundatum [Walt.] Kuntze.) cultivars 'Floratam' and 'Palmetto', 'SeaIsle 1' seashore Paspalum(Paspalum vaginatumSwartz.), 'Empire' zoysiagrass(Zoysia japonica Steud.), and 'Pensacola' bahiagrass(Paspalum notatum Flugge) were established in lysimeters in the University of Florida Envirotron greenhouse facility in Gainesville. Irrigation was applied at100%, 80%, 60%, or 40% of evapotranspiration(ET). Evaluations included: a) shoot quality, leaf rolling, leaf firing; b) leaf relative water content(RWC), soil moisture content, chlorophyll content index(CCI), canopy photosynthesis(PS); c) multispectral reflectance(MSR); d) root distribution; and e) water use efficiency. Grasses irrigated at 100% and 80% of ET had no differences in visual quality, leaf rolling, leaf firing, RWC, CCI, and PS. Grasses irrigated at 60% of ET had higher values in physiological aspects than grasses irrigated at 40% of ET. 'Sealsle 1' and 'Palmetto' had a deeper root system than 'Empire' and 'Pensacola', while 'Floratam' had the least amount of root mass. Photosynthesis was positively correlated with visual assessments such as turf quality, leaf rolling, leaf firing, and sensor-based measurements such as CCI, soil moisture, and MSR. Reducing the amount of applied water by 20% did not reduce turfgrass quality and maintained acceptable physiological functioning.

Evaluation of Drought Tolerance of Oplopanax elatus Obtained from Pressure-Volume Curves (P-V 곡선법을 활용한 땃두릅나무의 내건성 평가)

  • Lee, K.C.;Kwon, Y.H.;Kwon, Y.K.;Han, S.K.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.21 no.1
    • /
    • pp.41-48
    • /
    • 2019
  • This study was carried out to establish a proper cultivation site and to diagnose the drought tolerance of Oplopanax elatus leaves by using pressure-volume curves. As a result of analysing data measured, the leaf of Oplopanax elatus showed the osmotic pressure at full turgor(Ψosat) was -0.77 MPa, and the osmotic pressure at incipient plasmolysis(Ψotlp) was -0.90 MPa. Then, the value of maximum bulk modulus of elasticity Emax was 3.7 MPa, showing that slightly lower drought tolerance of Oplopanax elatus. Furthermore, the values of relative water contents RWCtlp and RWC* were above 80%, showing that the function of osmoregulation is somewhat better. Thus, responses to water relations such as Ψosat, Ψotlp, Emax, RWCtlp and RWC* of Oplopanax elatus showed relatively lower drought-tolerance property indicating that those growth are appropriate in high moisture soil sites.