• 제목/요약/키워드: leading edge

검색결과 664건 처리시간 0.029초

세포 이동에서 PI3K 억제제인 LY294002의 효과 (Effect of a PI3K inhibitor LY294002 on cell migration)

  • 김원범;전택중
    • 통합자연과학논문집
    • /
    • 제15권3호
    • /
    • pp.131-136
    • /
    • 2022
  • Cell migration is essential for diverse cellular processes including wound healing, immune response, development, and cancer metastasis. Pi3-kinase (PI3K) is a key regulator for actin cytoskeleton and phosphorylates phosphatidylinositol (4,5)-diphosphate (PIP2) to phosphatidylinositol (3,4,5)-trisphosphate (PIP3). High levels of PIP3 by PI3Ks are associated with increased levels of F-actin and pseudopod extension at the leading edge of migrating cells such as neutrophils and Dictyostelium. LY294002 is a well-known PI3K specific inhibitor. Here, we investigated the effect of LY294002 on cell migration. First, we evaluated the appropriate concentration of dimethyl sulfoxide (DMSO) for using as a solvent for LY294002. DMSO is a highly polar organic reagent and one of the most common solvent for organic and inorganic chemicals. Cell morphology and cell migration were unaffected at the concentrations less than 0.1 % DMSO. Therefore, stock solution of LY294002 was prepared so that the final concentration of DMSO was 0.1 % or less when treated. When cells were treated with LY294002, cell migration was increased in a concentration-dependent manner. The maximum speed was detected in the presence of 30 µM LY294002. These results suggest that PI3Ks play a inhibitory role in regulating cell migration in our experimental conditions.

PIV study of the flow around a 5:1 rectangular cylinder at moderate Reynolds numbers and small incidence angles

  • Guissart, Amandine;Elbaek, Erik;Hussong, Jeanette
    • Wind and Structures
    • /
    • 제34권1호
    • /
    • pp.15-27
    • /
    • 2022
  • This work comes within the framework of the "Benchmark on the Aerodynamics of a Rectangular Cylinder" that investigates a rectangular cylinder of length-to-depth ratio equal to 5. The present study reports and discusses velocity fields acquired using planar Particle Image Velocitmetry for several angles of attack and Reynolds numbers. In particular, for a cylinder depth-based Reynolds number of 2 × 104 and zero incidence angle, the flow features along the lateral (parallel to the freestream) upper and lower surfaces of the cylinder are reported. Using first and second order statistics of the velocity field, the main flow features are discussed, especially the size and location of the time-averaged flow structures and the distribution of the Reynolds stresses. The variation of the flow features with the incidence is also studied considering angles of attack up to 6°. It is shown that the time-averaged flow is fully detached for incidence higher than 2°. For an angle of attack of 0°, the effects of the Reynolds number varying between 5 × 103 and 2 × 104 are investigated looking at flow statistics. It is shown that the time-averaged location of the reattachment point and the shape and position of the time-averaged main vortex are mostly constant with the Reynolds number. However, the size of the inner region located below the time-averaged shear layer and just downstream the leading edge corner appears to be strongly dependent on the Reynolds number.

Coupling effects of vortex-induced vibration for a square cylinder at various angles of attack

  • Zheng, Deqian;Ma, Wenyong;Zhang, Xiaobin;Chen, Wei;Wu, Junhao
    • Wind and Structures
    • /
    • 제34권5호
    • /
    • pp.437-450
    • /
    • 2022
  • Vortex-induced vibration (VIV) is a significant concern when designing slender structures with square cross sections. VIV strongly depends on structural dynamics and flow states, which depend on the conditions of the approaching flow and shape of a structure. Therefore, the effects of the angle of attack on the coupling effects of VIV for a square cylinder are expected to be significant in practice. In this study, the aerodynamic forces for a fixed and elastically mounted square cylinder were measured using wind pressure tests. Aerodynamic forces on the stationary cylinder are firstly discussed by comparisons of variation of statistical aerodynamic force and wind pressure coefficient with wind angle of attack. The coupling effect between the aerodynamic forces and the motion of the oscillating square cylinder by VIV is subsequently investigated in detail at typical wind angels of attack with occurrence of three typical flow regimes, i.e., leading-edge separation, separation bubble (reattachment), and attached flow. The coupling effect are illustrated by discussing the onset of VIV, characteristics of aerodynamic forces during VIV, and interaction between motion and aerodynamic forces. The results demonstrate that flow states can be classified based on final separation points or the occurrence of reattachment. These states significantly influence coupling effects of the oscillating cylinder. Vibration enhances vortex shedding, which creates strong fluctuations in aerodynamic forces. However, differences in the lock-in range, aerodynamic force, and interaction process for angles of attack smaller and larger than the critical angle of attack revealed noteworthy characteristics in the VIV of a square cylinder.

합성곱 신경망과 인코더-디코더 모델들을 이용한 익형의 유체력 계수와 유동장 예측 (Prediction of aerodynamic force coefficients and flow fields of airfoils using CNN and Encoder-Decoder models)

  • 서장훈;윤현식;김민일
    • 한국가시화정보학회지
    • /
    • 제20권3호
    • /
    • pp.94-101
    • /
    • 2022
  • The evaluation of the drag and lift as the aerodynamic performance of airfoils is essential. In addition, the analysis of the velocity and pressure fields is needed to support the physical mechanism of the force coefficients of the airfoil. Thus, the present study aims at establishing two different deep learning models to predict force coefficients and flow fields of the airfoil. One is the convolutional neural network (CNN) model to predict drag and lift coefficients of airfoil. Another is the Encoder-Decoder (ED) model to predict pressure distribution and velocity vector field. The images of airfoil section are applied as the input data of both models. Thus, the computational fluid dynamics (CFD) is adopted to form the dataset to training and test of both CNN models. The models are established by the convergence performance for the various hyperparameters. The prediction capability of the established CNN model and ED model is evaluated for the various NACA sections by comparing the true results obtained by the CFD, resulting in the high accurate prediction. It is noted that the predicted results near the leading edge, where the velocity has sharp gradient, reveal relatively lower accuracies. Therefore, the more and high resolved dataset are required to improve the highly nonlinear flow fields.

The Kernohan-Woltman Notch Phenomenon : A Systematic Review of Clinical and Radiologic Presentation, Surgical Management, and Functional Prognosis

  • Beucler, Nathan;Cungi, Pierre-Julien;Baucher, Guillaume;Coze, Stephanie;Dagain, Arnaud;Roche, Pierre-Hugues
    • Journal of Korean Neurosurgical Society
    • /
    • 제65권5호
    • /
    • pp.652-664
    • /
    • 2022
  • The Kernohan-Woltman notch phenomenon (KWNP) refers to an intracranial lesion causing massive side-to-side mass effect which leads to compression of the contralateral cerebral peduncle against the free edge of the cerebellar tentorium. Diagnosis is based on "paradoxical" motor deficit ipsilateral to the lesion associated with radiologic evidence of damage to the contralateral cerebral peduncle. To date, there is scarce evidence regarding KWNP associated neuroimaging patterns and motor function prognostic factors. A systematic review was conducted on Medline database from inception to July 2021 looking for English-language articles concerning KWNP, in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The research yielded 45 articles for a total of 51 patients. The mean age was 40.7 years-old and the male/female sex ratio was 2/1. 63% of the patients (32/51) suffered from head trauma with a majority of acute subdural hematomas (57%, 29/51). 57% (29/51) of the patients were in the coma upon admission and 47% (24/51) presented pupil anomalies. KWNP presented the neuroimaging features of compression ischemic stroke located in the contralateral cerebral peduncle, with edema in the surrounding structures and sometimes compression stroke of the cerebral arteries passing nearby. 45% of the patients (23/51) presented a good motor functional outcome; nevertheless, no predisposing factor was identified. A Glasgow coma scale (GCS) of more than 3 showed a trend (p=0.1065) toward a better motor functional outcome. The KWNP is a regional compression syndrome oftentimes caused by sudden and massive uncal herniation and leading to contralateral cerebral peduncle ischemia. Even though patients suffering from KWNP usually present a good overall recovery, patients with a GCS of 3 may present a worse motor functional outcome. In order to better understand this syndrome, future studies will have to focus on more personalized criteria such as individual variation of tentorial notch width.

Non-Gaussian feature of fluctuating wind pressures on rectangular high-rise buildings with different side ratios

  • Jia-hui Yuan;Shui-fu Chen;Yi Liu
    • Wind and Structures
    • /
    • 제37권3호
    • /
    • pp.211-227
    • /
    • 2023
  • To investigate the non-Gaussian feature of fluctuating wind pressures on rectangular high-rise buildings, wind tunnel tests were conducted on scale models with side ratios ranging from 1/9~9 in an open exposure for various wind directions. The high-order statistical moments, time histories, probability density distributions, and peak factors of pressure fluctuations are analyzed. The mixed normal-Weibull distribution, Gumbel-Weibull distribution, and lognormal-Weibull distribution are adopted to fit the probability density distribution of different non-Gaussian wind pressures. Zones of Gaussian and non-Gaussian are classified for rectangular buildings with various side ratios. The results indicate that on the side wall, the non-Gaussian wind pressures are related to the distance from the leading edge. Apart from the non-Gaussianity in the separated flow regions noted by some literature, wind pressures behind the area where reattachment happens present non-Gaussian nature as well. There is a new probability density distribution type of non-Gaussian wind pressure which has both long positive and negative tail found behind the reattachment regions. The correlation coefficient of wind pressures is proved to reflect the non-Gaussianity and a new method to estimate the mean reattachment length of rectangular high-rise building side wall is proposed by evaluating the correlation coefficient. For rectangular high-rise buildings, the mean reattachment length calculated by the correlation coefficient method along the height changes in a parabolic shape. Distributions of Gaussian and non-Gaussian wind pressures vary with side ratios. It is inappropriate to estimate the extreme loads of wind pressures using a fixed peak factor. The trend of the peak factor with side ratios on different walls is given.

Investigation of Tensile Behaviors in Open Hole and Bolt Joint Configurations of Carbon Fiber/Epoxy Composites

  • Dong-Wook Hwang;Sanjay Kumar;Dong-Hun Ha;Su-Min Jo;Yun-Hae Kim
    • Composites Research
    • /
    • 제36권4호
    • /
    • pp.259-263
    • /
    • 2023
  • This study investigated the open hole tensile (OHT) properties of carbon fiber/epoxy composites and compared them to bolt joint tensile (BJT) properties. The net nominal modulus and strength (1376 MPa) were found to be higher than the gross nominal strength (1041 MPa), likely due to increasing hole size. The OHT and BJT specimens exhibited similar stiffness, as expected without bolt rotation causing secondary bending. OHT specimens experienced a sharp drop in stress indicating unstable crack propagation, delamination, and catastrophic failure. BJT specimens failed through shear out on the bolt side and bearing failure on the nut side, involving fiber kinking, matrix splitting, and delamination, resulting in lower strength compared to OHT specimens. The strength retention of carbon fiber/epoxy composites with open holes was 66%. Delamination initiation at the hole's edge caused a reduction in the stress concentration factor. Filling the hole with a bolt suppressed this relieving mechanism, leading to lower strength in BJT specimens compared to OHT specimens. Bolt joint efficiency was calculated as 15%. The reduction in strength in bolted joints was attributed to fiber-matrix splitting and delamination, aligning with Hart Smith's bolted joint efficiency diagram. These findings contribute to materials selection and structural reliability estimation for carbon fiber/epoxy composites. They highlight the behavior of open hole and bolt joint configurations under tensile loading, providing valuable insights for engineering applications.

Halo CME mass estimated by synthetic CMEs based on a full ice-cream cone model

  • Na, Hyeonock;Moon, Yong-Jae
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.43.1-43.1
    • /
    • 2021
  • In this study, we suggest a new method to estimate the mass of a halo coronal mass ejection (CME) using synthetic CMEs. For this, we generate synthetic CMEs based on two assumptions: (1) the CME structure is a full ice-cream cone, (2) the CME electron density follows a power-law distribution (ρcme0r-n). The power-law exponent n is obtained by minimizing the root mean square error between the electron number density distributions of an observed CME and the corresponding synthetic CME at a position angle of the CME leading edge. By applying this methodology to 57 halo CMEs, we estimate two kinds of synthetic CME mass. One is a synthetic CME mass which considers only the observed CME region (Mcme1), the other is a synthetic CME mass which includes both the observed CME region and the occulted area larger than 4 solar radii (Mcme2). From these two cases, we derive conversion factors which are the ratio of a synthetic CME mass to an observed CME mass. The conversion factor for Mcme1 ranges from 1.4 to 3.0 and its average is 2.0. For Mcme2, the factor ranges from 1.8 to 5.0 with the average of 3.0. These results imply that the observed halo CME mass can be underestimated by about 2 times when we consider the observed CME region, and about 3 times when we consider the region including the occulted area. Interestingly these conversion factors have a very strong negative correlation with angular widths of halo CMEs.We also compare the results with the CME mass estimated from STEREO observations.

  • PDF

수중방파제 천단상의 표식암에 작용하는 불규칙파의 파력특성에 관한 실험적 연구 (Experimental Study on Irregular Wave Forces Acting on a Marker Rock Installed on a Submerged Breakwater)

  • 허동수
    • 대한토목학회논문집
    • /
    • 제26권4B호
    • /
    • pp.413-420
    • /
    • 2006
  • 연안역에 설치되는 구조물로서 경관이나 해수 교환면에서 높은 기능을 가지고 있는 수중방파제의 건설이 증가하고 있다. 수중방파제의 경우, 천단이 정수면 아래에 위치하기 때문에 소형선박의 항해에 대한 표식으로서 일반적으로 부이가 많이 이용되고 있으나, 경관면 뿐만 아니라 쇄파파력에 의한 계류시스템의 파단과 같은 문제점이 지적되고 있다. 이로 인해, 최근에는 계류부이방식 대신에 자연에 가까운 경관을 창조할 수 있는 표식암을 이용하는 경우가 늘고 있으며, 이러한 표식암에 작용하는 파력의 정확한 예측은 설계 시 매우 중요하다. 본 연구에서는 불규칙 파동장을 대상으로 표식암에 작용하는 파력특성을 수리모형실험에 근거하여 검토하였다. 무차원 파력은 수중방파제상의 표식암 설치위치가 연안측으로 이동함에 따라 감소하는 경향을 보였다. 또한, Morison식을 이용하여 얻어진 항력계수와 관성력계수의 변동특성이 K.C.수의 변화와 연관되어 논의되었다.

Effects of oscillation parameters on aerodynamic behavior of a rectangular 5:1 cylinder near resonance frequency

  • Pengcheng Zou;Shuyang Cao;Jinxin Cao
    • Wind and Structures
    • /
    • 제38권1호
    • /
    • pp.59-74
    • /
    • 2024
  • Large Eddy Simulation (LES) is used to explore the influence of vibration frequency and amplitude on the aerodynamic performance of a rectangular cylinder with an aspect ratio of B/D=5 (B: breadth; D: depth of cylinder) at a Reynolds number of 22,000 near resonance frequency. In smooth flow conditions, the research employs a sequence of three-dimensional simulations under forced vibration with diverse frequency ratios fe / fo = 0.8-1.2 (fe : oscillation frequency; fo : Strouhal frequency when the rectangular cylinder is stationary ) and oscillation amplitudes Ah/D = 0.05 - 0.3. The individual influences of fe / fo and Ah/D on the characteristics of integrated and distributed aerodynamic forces are the focal points of discussion. For the integrated aerodynamic force, particular emphasis is placed on the analysis of the dependence of velocity-proportional component C1 and displacement-proportional component C2 of unsteady aerodynamic force on amplitude and frequency ratio. Near the resonance frequency, the dependencies of C1 and C2 on amplitude are stronger than that of frequency ratio. For the distributed aerodynamic force, the increase in frequency and amplitude promotes the position of the main vortex core and reattachment to the leading edge in the streamwise direction. In the spanwise direction, vibration enhances the spanwise correlation of aerodynamic force to weaken the three-dimensional effect of the flow field, and a lower frequency ratio and larger amplitude amplify this effect.