• Title/Summary/Keyword: lead-frame

Search Result 335, Processing Time 0.03 seconds

A Study on the Life Prediction and Quality Improvement of Joint in IC Package (플라스틱 IC 패키지 접합부의 수명예측 및 품질향상에 관한 연구)

  • 신영의;김종민
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.124-132
    • /
    • 1999
  • Thermal fatigue strength of the solder joints is the most critical issue for TSOP(Thin Small Outline Package) because the leads of this package are extremely short and thermal deformation cannot be absorbed by the deflection of the lead. And the TSOP body can be subject to early fatigue failures in thermal cycle environments. This paper was discussed distribution of thermal stresses at near the joint between silicon chip and die pad and investigated their reliability of solder joints of TSOP with 42 alloy clad lead frame on printed circuit board through FEM and 3 different thermal cycling tests. It has been found that the stress concentration around the encapsulated edge structure for internal crack between the silicon chip and Cu alloy die pad. And using 42 alloy clad, The reliability of TSOP body was improved. In case of using 42 alloy clad die pad(t=0.03mm). $$\sigma$_{VMmax}$ is 69Mpa. It is showed that 15% improvement of the strength in the TSOP body in comparison with using Cu alloy die pad $($\sigma$_{VMmax}$=81MPa). In solder joint of TSOP, the maximum equivalent plastic strain and Von Mises stress concentrate on the heel of solder fillet and crack was initiated in it's region and propagated through the interface between lead and solder. Finally, the modified Manson-Coffin equation and relationship of the ratio of $N_{f}$ to nest(η) and cumulative fracture probability(f) with respect to the deviations of the 50% fracture probability life $(N_{f 50%})$ were achieved.

  • PDF

Application of steel equivalent constitutive model for predicting seismic behavior of steel frame

  • Wang, Meng;Shi, Yongjiu;Wang, Yuanqing
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1055-1075
    • /
    • 2015
  • In order to investigate the accuracy and applicability of steel equivalent constitutive model, the calculated results were compared with typical tests of steel frames under static and dynamic loading patterns firstly. Secondly, four widely used models for time history analysis of steel frames were compared to discuss the applicability and efficiency of different methods, including shell element model, multi-scale model, equivalent constitutive model (ECM) and traditional beam element model (especially bilinear model). Four-story steel frame models of above-mentioned finite element methods were established. The structural deformation, failure modes and the computational efficiency of different models were compared. Finally, the equivalent constitutive model was applied in seismic incremental dynamic analysis of a ten-floor steel frame and compared with the cyclic hardening model without considering damage and degradation. Meanwhile, the effects of damage and degradation on the seismic performance of steel frame were discussed in depth. The analysis results showed that: damages would lead to larger deformations. Therefore, when the calculated results of steel structures subjected to rare earthquake without considering damage were close to the collapse limit, the actual story drift of structure might already exceed the limit, leading to a certain security risk. ECM could simulate the damage and degradation behaviors of steel structures more accurately, and improve the calculation accuracy of traditional beam element model with acceptable computational efficiency.

SCALED VISUAL CURVATURE AND VISUAL FRENET FRAME FOR SPACE CURVES

  • Jeon, Myungjin
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.37-53
    • /
    • 2021
  • In this paper we define scaled visual curvature and visual Frenet frame that can be visually accepted for discrete space curves. Scaled visual curvature is relatively simple compared to multi-scale visual curvature and easy to control the influence of noise. We adopt scaled minimizing directions of height functions on each neighborhood. Minimizing direction at a point of a curve is a direction that makes the point a local minimum. Minimizing direction can be given by a small noise around the point. To reduce this kind of influence of noise we exmine the direction whether it makes the point minimum in a neighborhood of some size. If this happens we call the direction scaled minimizing direction of C at p ∈ C in a neighborhood Br(p). Normal vector of a space curve is a second derivative of the curve but we characterize the normal vector of a curve by an integration of minimizing directions. Since integration is more robust to noise, we can find more robust definition of discrete normal vector, visual normal vector. On the other hand, the set of minimizing directions span the normal plane in the case of smooth curve. So we can find the tangent vector from minimizing directions. This lead to the definition of visual tangent vector which is orthogonal to the visual normal vector. By the cross product of visual tangent vector and visual normal vector, we can define visual binormal vector and form a Frenet frame. We examine these concepts to some discrete curve with noise and can see that the scaled visual curvature and visual Frenet frame approximate the original geometric invariants.

An Algorithm for Pattern Classification of ECG Signals Using Frame Knowledge Representation Technique (게임 지식 표현 기법을 이용한 심전도 신호의 패턴해석 알고리즘에 관한 연구)

  • 신건수;이병채;정희교;이명호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.4
    • /
    • pp.433-441
    • /
    • 1992
  • This paper describes an algorithm that can efficiently analyze the ECG signal using frame knowledge representation technique. Input to the analysis process is a set of significant points which have been extracted from an original sampled signal(lead II) by the syntactic peak recognition algorithm. The hierarchical property of ECG signal is represented by hierarchical AND/OR graph. The semantic information and constraints of the ECG signal are desctibed by frame. As the control mechanism for labeling points, the search mechanism with the mixed paradigms of data-driven and model driven hypothesis formation, scoring function, hypothesis modification network and instance inheritance are used. We used the CSE database in order to evaluate the performance of the proposed algorithm.

Development of Seismic Strengthening Composite Method using Steel type CFT Frame (철골형 CFT 프레임을 활용한 내진보강 복합공법 개발)

  • Lee, Dong-Oun;Woo, Jong-Yeol;Park, Hyeon-Jeong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.101-102
    • /
    • 2018
  • There is a risk that the damage caused by frequent earthquakes can lead to the risk of personal injury due to cracks in buildings and collapse of major structures. Although the seismic design of the new building is designed to be reinforced, the existing structure is not exposed to the risk of earthquake. Therefore, it is aimed to develop the steel frame type CFT composite method which can easily reinforce the CFT structural system with excellent seismic performance against the old non - seismic structure.

  • PDF

Vulnerability assessment of residential steel building considering soil structure interaction

  • Kailash Chaudhary;Kshitij C. Shrestha;Ojaswi Acharya
    • Earthquakes and Structures
    • /
    • v.25 no.2
    • /
    • pp.79-87
    • /
    • 2023
  • Special moment resisting steel frame structures are now being used commonly in highly seismic regions as seismically reliable structures. However, a very important parameter describing the dynamics of steel structures during earthquake loading, Soil Structure Interaction (SSI), is generally neglected. In this study, the significance of consideration of flexibility of soil in being able to obtain a result closer to reality is asserted. The current paper focuses on calculation of seismic fragility curves special moment resisting steel frame structures under different earthquake loadings for fixed-base and SSI models. The observation of obtained fragility curves lead to the conclusion that the SSI has a considerable effect on component fragility for the steel structures, with its effects decreasing for higher peak ground acceleration. The results show that the structures when considered SSI have a higher probability of exceeding a damage limit state. This observation attests the role of SSI in the accurate study of structural performance.

Development of An Optimal Layout Design System in Multihole Blanking Process

  • Lee, Sun-Bong;Kim, Dong-Hwan;Kim, Byung-Min
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.1
    • /
    • pp.36-41
    • /
    • 2004
  • The blanking of thin sheet metal using progressive dies is an important process on production of precision electronic machine parts such as IC leadframe. This paper summarizes the results of simulating the progressive blanking process by means of LS/DYNA. In order to verify the influence of blanking order on the final lead profile and deformed configuration, simulation technique has been proposed and analyzed using a commercial FEM code, LS/DYNA. The results of FE-simulations are in good agreement with the experimental result. After then, to construct rule base in progressive blanking process, FE-simulation has been performed using a simple model. Based on this result rule base is set up and then the blanking order of inner lead is rearranged. Consequently, from the results of FE-simulation using suggested method in this paper, it is possible to predict the shift of lead to manufacture high precision lead frame in progressive blanking process. The proposed method can give more systematic and economically feasible means for designing progressive blanking process.

Study on Joining Strength Improvement of Solder Joint with Pb Free Solder (Pb Free 솔더를 사용한 솔더 접합부의 접합 강도 향상에 관한 연구)

  • 신영의;김영탁
    • Journal of Welding and Joining
    • /
    • v.15 no.2
    • /
    • pp.36-42
    • /
    • 1997
  • In this paper, stability of initial strength at solder joint with lead free solders, such as Sn-In (52-48%) and Sn-Ag (96.5-3.5wt%) was studied. To obtain at solder joint with high quality, it is very important to control the temperature at the interface of solder joints. It is found that the thermal EMF (electro motive force) occurs betwee lead frame and copper pad on a substrate during reflow soldering process using heated tip. As a result of control the temperature at interface of solder joints, variation of initial strength at solder joint decreases from about $\pm40%$ to $\pm20%$, and it is realized Pb free soldering process using Sn/In and Sn-Ag solder paste.

  • PDF

A Study on the Thermal Fatigue of Solder Joint by Package Types (패키지 유형에 따른 솔더접합부의 열피로에 관한 연구)

  • 김경섭;신영의
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.78-83
    • /
    • 1999
  • Solder joint is the weakest part which connects in mechanically and electronically between package body and PCB(Printed Circuit Board). Recently, the reliability of solder joint become the most critical issue in surface mounted technology. The solder joint interconnection between plastic package and PCB is susceptible to shear stress during thermal storage due to the mismatch in coefficient of thermal expansion between plastic package and PCB. A general computational approach to determine the effect of solder joint shape on the fatigue life presented. The thermal fatigue life was estimated from the engelmaier equation which was obtained from the temperature cycling loading($-65^{\circ}C$ to $150^{\circ}C$). As result of the simulation, TSOP structure has the shortest thermal fatigue life and the same structure Copper lead has 2.5 times as much fatigue life as Alloy 42 lead. In BGA structure, fatigue life time extended 80 times when underfill material exists.

  • PDF