• Title/Summary/Keyword: lead vanadate

Search Result 2, Processing Time 0.021 seconds

In-situ Growth of Epitaxial PbVO3 Thin Films under Reduction Atmosphere

  • Oh, Seol Hee;Jin, Hye-Jin;Shin, Hye-Young;Shin, Ran Hee;Yoon, Seokhyun;Jo, William;Seo, Yu-Seong;Ahn, Jai-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.361.1-361.1
    • /
    • 2014
  • PbVO3 (PVO), a polar magnetic material considered as a candidate of multiferroic, has ferroelectricity along the c-axis and 2-dimensional antiferromagnetism lying in the in-plane through epitaxial growth [1,2]. PVO thin films were grown on LaAlO3 (001) substrates under reduction atmosphere from a stable Pb2V2O7 sintered target using pulsed laser deposition method. Epitaxial growth of the PVO films is possible only under Ar atmospheren with no oxygen partial pressure. X-ray diffraction was used to investigate the phase formation and texture of the films. We confirmed epitaxial growth of the PVO films with crystalline relationship of PbVO3[001]//LaAlO3[001] and PbVO3[100]//LaAlO3[100]. In addition, surface morphology of the films displays drastic changes in accordance with the growth conditions. Elongated PVO grains are related to the Pb2V2O7 pyrochlore structure. The relation between structural deformation and ferroelectricity in the PVO films was examined by local measurement of piezoresponse force microscopy.

  • PDF

Effects of Vanadate Solution Property on the Precipitation of Ammonium (Meta, Poly)Vanadate (바나데이트 수용액 특성이 암모늄(메타, 폴리)바나데이트 침전에 미치는 영향)

  • Ho-Sung Yoon;Seo Jin Heo;Yujin Park;Rina Kim;Chul-Joo Kim;Kyeong Woo Chung;Hong In Kim
    • Resources Recycling
    • /
    • v.32 no.3
    • /
    • pp.26-37
    • /
    • 2023
  • Good control of the solution pH and temperature is required to recover vanadium from the water leaching solution of vanadium ore after sodium roasting. However, such adjustments could lead to aluminum-vanadium and sodium-vanadium co-precipitation, which greatly affects the efficiency of vanadium recovery. In this study, a process that can increase the efficiency of vanadium recovery as ammonium metavanadate [NH4VO3] and ammonium polyvanadate [(NH4)2V6O16·H2O] was investigated by examining the characteristics of vanadium-containing aqueous solutions during precipitation. The aluminum content of vanadium-containing water leaching solutions has a great effect on the loss of vanadium when the pH of the aqueous solution is adjusted to 9. Therefore, a process to minimize aluminum leaching is also required. In this study, ~99% or more of vanadium present in vanadium-containing aqueous solutions was precipitated and recovered as NH4VO3 by adding 3 equivalents of ammonium chloride relative to the vanadium content at pH 9 and room temperature. (NH4)2V6O16·H2O was precipitated from the aluminum-vanadium coprecipitates generated during the pH-adjustment of the aqueous solutions to 9 by dissolving the coprecipitate in the solutions at pH 2.5 and controlling their sodium content to 2,000 mg/L or less. Approximately, 98% or more of the available (NH4)2V6O16·H2O could be precipitated and recovered from a solution with a vanadium content of 2,200 mg/L and a sodium content of 1,875 mg/L at pH 2.5 by adding approximately 3 equivalents of ammonium chloride relative to the vanadium content at 95℃ or higher. The overall process could precipitate and recover, approximately 91% or more of the total vanadium in the water leaching solution as NH4VO3 and (NH4)2V6O16·H2O.