• Title/Summary/Keyword: lead sulfate

Search Result 100, Processing Time 0.026 seconds

Effect of Arsenic, Antimony, Bismuth and Lead on Passivation Behavior of Copper Anode (As, Sb, Bi, Pb가 조동의 부동태에 미치는 영향)

  • Ahana, Sung-Chen;Lee, Sang-Mun;Kim, Yong-Hwan;Chung, Won-Sub;Chung, Uoo-Chang
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.5
    • /
    • pp.215-222
    • /
    • 2006
  • The passivity behavior of copper anode containing impurities in copper sulfate solution for electrorefining process was studied at several different levels of impurities such as As, Sb, Bi and Pb. The passivity behavior was investigated by electrochemical techniques (galvanostatic, potentiodynamic and cyclic voltammetry tests) and surface analysis (optical microscopy, electron probe microanalysis, scanning electron microscopy). The results were that arsenic, antimony inhibited passivation and bismuth accelerated it and lead containing anode showed different passivity behavior from above anodes. The improved passivity characteristics could be explained by decrease in oxygen content in passivity film which resulted from a reaction among the impurities, oxygen and copper in the anode. The SEM image revealed that arsenic or antimony containing anode exhibited a porous passivity film and bismuth containing anode showed the compact passivity film and lead containing anode had loose passivity film on anode.

Effects of Curing Conditions on the Chemical Compositions of Positive Plate for Lead Acid Battery Plates (납축전지 극판의 숙성 조건이 양극판의 화학적 조성에 미치는 영향)

  • Ku, Bon-Keun;Jeong, Soon-Wook
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.347-354
    • /
    • 2006
  • Generally, it has been known that positive plate efficiency is the most influential effect on the initial current capacity of lead acid battery. Thus, in this study, we have investigated the curing effect of the positive plate, which is one of the important lead acid battery processes. The curing process of the positive plate is performed either with the separation of each plate with 1mm gap or with no gap of plate. As a result, when there is no interval between each plate, the higher temperature current happened than expected, resulting in the changes in the initial current efficiency of the lead acid battery. The chemical composition and crystal structure of a material coated on the positive plate were identified with XRD and SEM. It was resulted that were only there not a lot of 4BS (tetrabasic-lead sulfate, $4PbO{\cdot}PbSO_4)$ on the plate in case of curing of plates without interval, but a large quantity of $Pb_3O_4$ also formed on the surface. On the other hand, it was observed that 3BS (tribasic-lead sulface, $3PbO{\cdot}PbSO_4{\cdot}H_2O)$ was the main product on the plate in case of typical curing process with some interval. From the initial current capacity test, the positive plate having 3BS was approximately 40% higher in initial current capacity than that having 4BS. It was concluded that 4BS and $Pb_3O_4$ on the plate surface were harmful to the initial current capacity of lead acid battery.

Studies on Uptake by Crops of Lead and Reduction of it's Damage -II. Effect of application of calcium and phosphate materials on Pb Solubility in Soil (농작물(農作物)에 대(對)한 납(pb)의 흡수(吸收) 및 피해경감(被害輕減)에 관(關)한 연구(硏究) -II. 석회(石灰)와 인산물질시용(燐酸物質施用)이 토양중(土壤中) 납(pb) 용출량(溶出量)에 미치는 영향(影響))

  • Kim, Kyu Sik;Kim, Bok Young;Han, Ki Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.3
    • /
    • pp.217-221
    • /
    • 1986
  • A column test was conducted to find out the effect of application of slaked lime, calcium sulfate, calcium superphosphate, and phosphoric acid on the solubility of lead in soil. The soil was adjusted to 310.8 ppm concentration of Pb and applied with amounts of calcium equivalent to 600, 1000, 2000 ppm as slaked lime; sulfate 144, 288, 432 ppm as calcium sulfate; phosphate 95, 190, 285 ppm as calcium superphosphate and phosphoric acid, respectively. The results obtained are as follows: 1. The increasing application of improvement agents reduced the amounts of water soluble Pb in soil. Phosphoric acid was the most effect among to the treatments. 2. The slaked lime treatment has the highest pH of soil and the lowest at the phosphoric acid one. The soil Eh has a reverse tendency the soil pH. 3. Water soluble Ca, $PO_4$ and $SO_4$ contents increased with increasing application amounts of improvement agents in soil. 4. $1N-NH_4$ OAC soluble Pb content in soil was a decreasing tendency in the order of calcium superphosphate, phosphoric acid, slaked lime, calcium sulfate and control after experiment.

  • PDF

Long-Term Durability Estimation of Cementless Concrete Based on Alkali Activated Slag (알칼리 활성 슬래그 기반 무시멘트 콘크리트의 장기 내구성 평가)

  • Lee, Hyun-Jin;Lee, Seok-Jin;Bae, Su-Ho;Kwon, Soon-Oh;Lee, Kwang-Myong;Jung, Sang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.149-156
    • /
    • 2016
  • It has been well known that concrete structures exposed to chloride and sulfate attack environments lead to significant deterioration in their durability due to chloride ion and sulfate ion attack. The purpose of this experimental research is to evaluate the long-term durability against chloride ion and sulfate attack of the alkali activated cementless concrete replacing the cement with ground granulated blast furnace slag. For this purpose, the cementless concrete specimens were made for water-binder ratios of 40%, 45%, and 50%, respectively and then this specimens were cured in the water of $20{\pm}3^{\circ}C$ and immersed in fresh water, 10% sodium sulfate solution for 28, 91, 182, and 365 days, respectively. To evaluate the long-term durability to chloride ion and sulfate attack for the cementless concrete specimens, the diffusion coefficient for chloride ion and compressive strength ratio, mass change ratio, and length change ratio were measured according to the NT BUILD 492 and JSTM C 7401, respectively. It was observed from the test results that the resistance against chloride ion and sulfate attack of the cemetntless concrete were comparatively largely increased than those of OPC concrete irrespective of water-binder ratio.

Single-particle Characterization of Aerosol Particles Collected Nearby a Lead Smelter in China

  • Jung, Hae-Jin;Song, Young-Chul;Liu, Xiande;Li, Yuwu;Ro, Chul-Un
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.2
    • /
    • pp.83-95
    • /
    • 2012
  • China has been a top producer and exporter of refined lead products in the world since the year 2000. After the phasing-out of leaded gasoline in the late 1990s, non-ferrous metallurgy and coal combustion have been identified as potential major sources of aerosol lead in China. This paper presents the single particle analytical results of ambient aerosol particles collected near a lead smelter using a scanning electron microscopy- energy dispersive x-ray spectroscopy (SEM-EDX). Aerosol particle samples were collected over a 24-hour period, starting from 8 pm on 31 May 2002, using a high volume TSP sampler. For this near source sample, 73 particles among 377 particles analyzed (accounting for 19.4%) were lead-containing particles mixed with other species (S, Cl, K, Ca, and/or C), which probably appeared to be from a nearby lead smelter. Lead-containing particles of less than $2{\mu}m$ size in the near source sample were most frequently encountered with the relative abundances of 42%. SEM-EDX analysis of individual standard particles, such as PbO, PbS, $PbSO_4$, $PbCl_2$, and $PbCO_3$, was also performed to assist in the clear identification of lead-containing aerosol particles. Lead-containing particles were frequently associated with arsenic and zinc, indicating that the smelter had emitted those species during the non-ferrous metallurgical process. The frequently encountered particles following the lead-containing particles were mineral dust particles, such as aluminosilicates (denoted as AlSi), $SiO_2$, and $CaCO_3$. Nitrate- and sulfate-containing particles were encountered frequently in $2-4{\mu}m$ size range, and existed mostly in the forms of $Ca(NO_3,SO_4)/C$, $(Mg,Ca)SO_4/C$, and $AlSi+(NO_3,SO_4)$. Particles containing metals (e.g., Fe, Cu, and As) in this near source sample had relative abundances of approximately 10%. Although the airborne particles collected near the lead smelter contained elevated levels of lead, other types of particles, such as $CaCO_3$-containing, carbonaceous, metal-containing, nitrates, sulfates, and fly-ash particles, showed the unique signatures of samples influenced by emissions from the lead smelter.

THE MICROSTRUCTURE OF Pb-DOPED SOLIDIFIED WASTE FORMS USING PORTLAND CEMENT AND CALCITE

  • Yoo, Hee-Chan;Lee, Dong-Jin
    • Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.54-61
    • /
    • 2006
  • An electron probe microanalysis (EPMA) investigation can provide quantitative and qualitative insight into the nature of the surface and bulk chemistry on solidified waste forms(SWF). The proportion of Pb in grain areas is below 0.3 wt. %, and the proportion near the border of the grain slightly increases to 0.98 wt. % but in the inter-particle areas farther from the grain, the concentration of Pb markedly increases. It is apparent that very little Pb diffuses into the tricalcium silicate($C_3S$) particles and most of the Pb exists as precipitates of sulfate, hydroxide, and carbonate in the cavity areas between $C_3S$ grains. Calcite additions on Pb-doped SWF are also observed to induce deeper incorporation of lead into the cement grains with EPMA line-analysis of cross-sections of cement grains. The line-analysis reveals the presence of $0.2{\sim}5$ weight % Pb over $5\;{\mu}m$ from cement grain boundaries. In the inter-particle areas, the ratio of Ca, Si, Al and S to Pb is relatively similar even at some distance from the grain border and the Pb (wt. %) ratio is reasonably constant throughout the whole inter-particles area. It is apparent that the enhanced development of C-S-H on addition of calcite can increasingly absorbs lead species within the silica matrix.

Assessment of Sorption Behavior on Slag Against Heavy Metals (카드뮴, 납, 구리에 대한 슬래그의 흡착특성평가)

  • Lee, Gwang-Hun;Choi, Sung-Dae;Chung, Jae-Shik;Park, Jun-Boum;Nam, Kyoung-Phile
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.6
    • /
    • pp.17-25
    • /
    • 2008
  • Permeable reactive barriers (PRBs) technology can be applied to contaminated groundwater remediation. It is necessary to select adequate reactive material according to contaminant characterization. In groundwater. In this research, the reaction between reactive material and heavy metal contaminants was estimated through batch test. Reactive material was slag, which has been produced in Gwangyang power plant, and heavy metal contaminants were cadmium, lead and copper. Batch test consisted of two testes: 1) sorption equilibrium test and 2) sorption kinetic test. Sorption equilibrium test was performed for estimating slag sorption capacity against contaminants. And sorption kinetic test was performed for slag sorption rate with contaminants species, contaminants initial concentration and sulfate. Sorption capacity and sorption rate were affected by contaminant species. Sorption rate increased with increasing initial concentration in lead and copper but decreased with increasing initial concentration in cadmium. Sorption rate increased in existing sulfate. In low concentration, film diffusion was domain mechanism, and in high concentration, particle diffusion was domain mechanism.

Analysis of CT Image Quality Change according to Clinical Application Shielding Materials (임상 적용 차폐물질에 따른 선량 및 CT 화질 변화 분석)

  • Hyeon-Ju Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.2
    • /
    • pp.215-221
    • /
    • 2023
  • Among brain CT scan conditions including the lens, the tube voltage was changed to 80, 100, and 120 kVp and applied. The change in dose was analyzed using lead, lead goggles and barium sulfate silicon shielding materials, and the degree of influence of the shielding materials on image quality was compared and analyzed by applying the SNR, CNR, and SSIM index analysis methods. As a result, it was analyzed that although the dose was reduced by applying all shielding materials, the difference in dose reduction was not large (P > 0.05). In addition, as for the change in image quality due to the application of the shielding material, SNR and CNR were the highest when lead goggles were applied, and the structural similarity was measured to be the best as it was closest to the reference value of 1 in SSIM analysis. Therefore, based on the results of this study, it is thought that if more diverse shielding materials and clinical test results are derived and applied, it will be helpful for the clinical application criteria in the case of shielding utilization inspection.

Development of Shielding using Medical Radiological Contrast Media; Comparison Analysis of Barium Sulfate Iodine Shielding ability by Monte Carlo Simulation (의료방사선 조영제를 이용한 차폐체 개발; 몬테카를로 시뮬레이션을 통한 황산바륨과 요오드의 차폐능 비교분석)

  • Kim, Seon-Chil
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.329-334
    • /
    • 2017
  • The purpose of this study is to estimating the possibility of manufacturing radiation shielding sheet by searching for environmentally friendly materials suitable for medical environment of medical radiation shielding. There are many tungsten products which are currently used as shielding materials in place of lead, but there are small problems in the mass production of lightweight shielding sheets due to economical efficiency. To solve these problems, a lightweight, environmentally friendly material with economical efficiency is required. In this study, Barium sulphate and Iodine were proposed. Both materials are already used as contrast medias in radiography, and it is predicted that the shielding effect will be sufficient in a certain region as a shielding material because of the characteristic of absorbing radiation. Therefore, in this study, we used a Monte Carlo simulation to simulate radiation shielding materials. When it is a contrast agent such as Barium sulfate and Iodine, the radiation absorption effect in the high energy region appears greatly, and the effectiveness of the two shielding substance in the energy region of the star with thickness of 120 kVp is also evaluated in the medical radiation imaging region. Simulated estimation results it was possible to estimate the effectiveness of shielding for all two substances. Iodine has higher shielding effect than barium sulfate, 0.05 mm thick appears great effect. Therefore, the Monte Carlo simulation confirms that iodine, which is a radiological contrast agent, is also usable as barium sulfate in the production of radiation shielding sheets.

Study on Geochemical Behavior of Heavy Metals by Indigenous Bacteria in Contaminated Soil and Sediment (국내 일부 오염 토양 및 퇴적물 내 토착 미생물에 의한 중금속의 지구화학적 거동 연구)

  • Song, Dae-Sung;Lee, Jong-Un;Ko, Il-Won;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.575-585
    • /
    • 2007
  • Microbial control of the geochemical behavior of heavy metals (Cd, Cu, Pb, and Zn) and As in contaminated subsurface soil and sediment was investigated through activation of indigenous bacteria with lactate under anaerobic condition for 25 days. The results indicated that dissolved Cd, Pb and Zn were microbially removed from solutions, which was likely due to the formation of metal sulfides after reduction of sulfate by indigenous sulfate-reducing bacteria. Soils from the Dukeum mine containing a large amount of sulfate resulted in complete removal of dissolved As after 25 days by microbial activities, while there were gradual increases in dissolved As concentration in soils from the Hwabuk mine and sediments from the Dongducheon industrial area which showed low $SO_4{^2-}$ concentrations. Addition of appropriate carbon sources and sulfate to contaminated geological media may lead to activation of indigenous bacteria and thus in situ stabilization of the heavy metals; however, potential of As release into solution after the amendment should be preferentially investigated.