• Title/Summary/Keyword: lc space

Search Result 42, Processing Time 0.016 seconds

Effect of Stewing Time on the Small Molecular Metabolites, Free Fatty Acids, and Volatile Flavor Compounds in Chicken Broth

  • Rong Jia;Yucai Yang;Guozhou Liao;Yuan Yang;Dahai Gu;Guiying Wang
    • Food Science of Animal Resources
    • /
    • v.44 no.3
    • /
    • pp.651-661
    • /
    • 2024
  • Chicken broth has a taste of umami, and the stewing time has an important effect on the quality of chicken broth, but there are fewer studies on the control of the stewing time. Based on this, the study was conducted to analyze the effects of different stewing times on the sensory, small molecular metabolites, free fatty acids, and volatile flavor compounds contents in chicken broths by liquid chromatography-quadrupole/time-of-flight mass spectrometry, gas chromatography-mass spectrometry, headspace solid-phase microextraction, and gas chromatography-mass spectrometry. Eighty-nine small molecular metabolites, 15 free fatty acids, and 86 volatile flavor compounds were detected. Palmitic and stearic acids were the more abundant fatty acids, and aldehydes were the main volatile flavor compounds. The study found that chicken broth had the best sensory evaluation, the highest content of taste components, and the richest content of volatile flavor components when the stewing time was 2.5 h. This study investigated the effect of stewing time on the quality of chicken broth to provide scientific and theoretical guidance for developing and utilizing local chicken.

Implementation of Barcelona Basic Model into TOUGH2-MP/FLAC3D (TOUGH2-MP/FLAC3D의 Barcelona Basic Model 해석 모듈 개발)

  • Lee, Changsoo;Lee, Jaewon;Kim, Minseop;Kim, Geon Young
    • Tunnel and Underground Space
    • /
    • v.30 no.1
    • /
    • pp.39-62
    • /
    • 2020
  • In this study, Barcelona Basic Model (BBM) was implemented into TOUGH2-MP/FLAC3D for the numerical analysis of coupled thermo-hydro-mechanical (THM) behavior of unsaturated soils and the prediction of long-term behaviors. Similar to the methodology described in a previous study for the implementation of BBM into TOUGH-FLAC, the User Defined Model (UDM) of FLAC based on the Modified Cam Clay Model (MCCM) and the FISH function of FLAC3D were used to extend the existing MCCM module in FLAC3D for the implementation of BBM into TOUGH2-MP/FLAC3D. In the developed BBM module in TOUGH2-MP/FLAC3D, the plastic strains due to change in suction increase (SI) in addition to mean effective stress are calculated. In addition to loading-collapse (LC) yield surface, suction increase (SI) yield surface is changed by hardening rules in the developed BBM module. Several numerical simulations were conducted to verify and validate the implementation of BBM: using an example presented in the FLAC3D manual for the standard MCCM, simulation results using COMSOL, and experimental data presented in SKB Reports. In addition, the developed BBM analysis module was validated by simultaneously performing a series of modeling tests that were performed for the validation of the Quick tools developed for the purpose of effectively deriving BBM parameters, and by comparing the Quick tools and Code_Bright results reported in a previous study.