• 제목/요약/키워드: layered shell element

검색결과 58건 처리시간 0.023초

Numerical frequency analysis of skew sandwich layered composite shell structures under thermal environment including shear deformation effects

  • Katariya, Pankaj V.;Panda, Subrata K.
    • Structural Engineering and Mechanics
    • /
    • 제71권6호
    • /
    • pp.657-668
    • /
    • 2019
  • The numerical thermal frequency responses of the skew sandwich shell panels structure are investigated via a higher-order polynomial shear deformation theory including the thickness stretching effect. A customized MATLAB code is developed using the current mathematical model for the computational purpose. The finite element solution accuracy and consistency have been checked via solving different kinds of numerical benchmark examples taken from the literature. After confirming the standardization of the model, it is further extended to show the effect of different important geometrical parameters such as span-to-thickness ratios, aspect ratios, curvature ratios, core-to-face thickness ratios, skew angles, and support conditions on the frequencies of the sandwich composite flat/curved panel structure under elevated temperature environment.

자기 강화형 폴리프로필렌을 이용한 섬유 금속 적층판의 성형성에 관한 수치해석적 연구 (Numerical Study of the Formability of Fiber Metal Laminates Based on Self-reinforced Polypropylene)

  • 이병언;김정;강범수;송우진
    • 소성∙가공
    • /
    • 제22권3호
    • /
    • pp.150-157
    • /
    • 2013
  • Fiber metal laminates (FMLs) are layered materials comprised of thin metal sheets and fiber reinforced plastic (FRP). This paper presents the numerical study of the formability enhancement of FMLs composed of an aluminum alloy and self-reinforced polypropylene (SRPP) composite. In this study, a numerical simulation based on finite element (FE) modeling is proposed to evaluate the formability of FMLs using ABAQUS/Explicit. The FE model, which included a single layer of solid and shell elements to model the blank, used discrete layers of the solid element with a contact model and shell elements with a friction based model for the aluminum alloy-composite interface conditions. This method allowed the description of each layer of FMLs and was able to simulate the interaction between the layers. It is noted through this research that the proposed numerical simulation described properly the formability enhancement of the FMLs and the simulation results showed good agreement with experimental results.

지진에 의한 원전 보조건물 전단벽의동적 응답 특성 추정 (Seismic Response Characterization of Shear Wall in Auxiliary Building of Nuclear Power Plant)

  • 모터 라만;타미나 나하르;백건휘;김두기
    • 한국지진공학회논문집
    • /
    • 제25권3호
    • /
    • pp.93-102
    • /
    • 2021
  • The dynamic characterization of a three-story auxiliary building in a nuclear power plant (NPP) constructed with a monolithic reinforced concrete shear wall is investigated in this study. The shear wall is subjected to a joint-research, round-robin analysis organized by the Korea Atomic Energy Research Institute, South Korea, to predict seismic responses of that auxiliary building in NPP through a shake table test. Five different intensity measures of the base excitation are applied to the shaking table test to get the acceleration responses from the different building locations for one horizontal direction (front-back). Simultaneously to understand the global damage scenario of the structure, a frequency search test is conducted after each excitation. The primary motivation of this study is to develop a nonlinear numerical model considering the multi-layered shell element and compare it with the test result to validate through the modal parameter identification and floor responses. In addition, the acceleration amplification factor is evaluated to judge the dynamic behavior of the shear wall with the existing standard, thus providing theoretical support for engineering practice.

Delamination growth analysis in composite laminates subjected to low velocity impact

  • Kharazan, Masoud;Sadr, M.H.;Kiani, Morteza
    • Steel and Composite Structures
    • /
    • 제17권4호
    • /
    • pp.387-403
    • /
    • 2014
  • This paper presents a high accuracy Finite Element approach for delamination modelling in laminated composite structures. This approach uses multi-layered shell element and cohesive zone modelling to handle the mechanical properties and damages characteristics of a laminated composite plate under low velocity impact. Both intralaminar and interlaminar failure modes, which are usually observed in laminated composite materials under impact loading, were addressed. The detail of modelling, energy absorption mechanisms, and comparison of simulation results with experimental test data were discussed in detail. The presented approach was applied for various models and simulation time was found remarkably inexpensive. In addition, the results were found to be in good agreement with the corresponding results of experimental data. Considering simulation time and results accuracy, this approach addresses an efficient technique for delamination modelling, and it could be followed by other researchers for damage analysis of laminated composite material structures subjected to dynamic impact loading.

필라멘트 와인딩 복합재 CNG 압력용기의 최적설계 (Optimal Design of Filament Wound Composite CNG Pressure Vessel)

  • 윤영복;조성원;하성규
    • 대한기계학회논문집A
    • /
    • 제26권1호
    • /
    • pp.23-30
    • /
    • 2002
  • Abstract The optimization is performed to reduce the mass of CNG pressure vessel reinforced with composite materials in the hoop direction. An axisymmetric shell element which takes into account the layered liner and hoop composite materials is thus developed and incorporated into a program Axicom. The accuracy of the program is then verified using the 4 noded element in ANSYS. Three different cases of optimization are then performed using the Axicom: (1) uniform hoop thickness, (2) varying hoop thickness, and (3) varying the ply angles and accordingly the thickness. Compared with a traditional method, cases (2) and (3) were found to be very effective in reducing the thickness and cost of the hoop composite materials by about 80% without sacrificing the safety factors.

회전자유도를 갖는 층상화 요소를 이용한 철근콘크리트 쉘구조의 비선형 동적해석 (Nonlinear Dynamic Analysis of Reinforced Concrete Shells Using Layered Elements with Drilling DOF)

  • 김태훈;이상국;신현목
    • 한국지진공학회논문집
    • /
    • 제5권6호
    • /
    • pp.21-27
    • /
    • 2001
  • 이 논문에서는 철근콘크리트 쉘구조의 동적해석을 위한 비선형 유한요소 해법을 제시하였다. 사용된 프로그램은 철근콘크리트 구조물의 해석을 위한 RCAHEST이다. 유한요소로서는 면내회전강성도를 갖는 4절점 평면 쉘요소가 사용되었다. 두께방향에 대한 철근과 콘크리트의 재료성질을 고려하기 위하여 층상화기법이 도입되었다. 재료적 비선형성에 대해서는 균열콘크리트에 대한 인장, 압축, 전단모델과 콘크리트 속에 있는 철근모델을 조합하여 고려하였다. 이에 대한 콘크리트의 균열모델로서는 분산균열모델을 사용하였다. 동적 평형방정식의 해는 HHT법에 의한 수치적분으로 구하였다. 신뢰성 있는 해석결과와 비교를 통하여 이 논문의 제안방법이 철근 콘트리트 쉘구조의 비선형 동적해석에 적합한 방법임을 입증하고자 한다.

  • PDF

Numerical and experimental study of large deflection of symmetrically laminated composite plates in compression

  • Chai, Gin Boay;Hoon, Kay Hiang
    • Structural Engineering and Mechanics
    • /
    • 제2권4호
    • /
    • pp.359-367
    • /
    • 1994
  • The stability behaviour of symmetrically laminated rectangular composite plates with loaded ends clamped and unloaded edges simply-supported, and subjected to uniform in-plane compression is investigated. A numerical and experimental investigation is presented in this contribution. The stacking sequence of the laminated glass/epoxy composite plates is symmetric about the middle surface and consists of 8-ply [0, 90, +45, -45]s lamination. Numerical predictions were obtained through the use of the finite element method. The above plates were modelled with 8-noded isoparametric layered shell elements. The effect of the input parameters such as the degree and forms of prescribed initial imperfection and the incremental step size required for incremental loading, on the convergence of the solution is thoroughly examined. Experimental results are presented for 10 test panels. All test panels were made from glass/epoxy unidirectional prepregs and have aspect ratio of 5.088. The laminate thicknesses were found to vary from 1.054 mm to 1.066 mm. Comparison of experimental data with predicted results show good correlation and give confidence in the finite element model.

사용후 핵연료 수송용기 샌드위치 복합재 충격완충체의 유효등가 유한요소 모델 제시 (Effective Equivalent Finite Element Model for Impact Limiter of Nuclear Spent Fuel Shipping Cask made of Sandwich Composites Panels)

  • 강승구;임재문;신광복;최우석
    • Composites Research
    • /
    • 제28권2호
    • /
    • pp.58-64
    • /
    • 2015
  • 본 논문에서는 샌드위치 복합재 패널로 제작되는 사용후 핵연료 수송용기 충격완충체의 유효등가 유한 요소모델을 제시하는데 목적을 둔다. 샌드위치 복합재 패널은 금속재 면재와 각각 우레탄 폼, 발사목 그리고 레드우드 심재로 구성되었다. 충격완충체의 유효등가 유한요소 모델은 샌드위치 복합재 패널의 저속충격 시험과 해석결과와의 비교를 통해 제시되었으며, LS-DYNA 3D를 사용한 동적 외연 유한요소해석에 의해 수행되었다. 시험과 해석 결과, 충격완충체 샌드위치 패널의 유한요소 모델은 적층쉘 요소의 면재와 솔리드요소의 심재를 사용한 기존의 혼합모델링 기법에 비해 면재와 심재 모두 솔리드 요소를 적용하는 방법이 더 정확한 결과를 나타냄을 확인하였다. 이때 발사목과 레드우드 심재는 요소제거 기능을 갖는 솔리드 요소로 모델링 되는 것이 추천되어진다.

열수축을 하는 필라멘트 와인딩 복합재료 관의 설계 (Design of Filament Wound Composite Tubes under Thermal Contraction)

  • 정태은;신효철
    • 대한기계학회논문집
    • /
    • 제17권10호
    • /
    • pp.2407-2417
    • /
    • 1993
  • Thermal deformations and stresses due to temperature changes are the serious problems in cryogenic structures such as the torque tube in a superconducting generator, In this paper, the equations of thermal expansion coefficients expressed only by material properties and winding angles are derived for the filament wound composite tubes. The experimental results of thermal contraction of CFRP tubes are compared with those from theoretical approach. Composite tubes with optimally regulated thermal expansion coefficient are designed on the basis of the study for the torque tube in the superconducting generator with temperature distributions varying from 300K to 4.2 K. The filament winding angle of composites resisting thermal stresses properly is sought by the finite element method using layered shell elements. The results show that the composite tubes designed for the requirements in cryogenic environments can effectively cope with the thermal stress problem.

Elasticity solution of multi-layered shallow cylindrical panels subjected to dynamic loading

  • Shakeri, M.;Eslami, M.R.;Alibiglu, A.
    • Steel and Composite Structures
    • /
    • 제2권3호
    • /
    • pp.195-208
    • /
    • 2002
  • Elasticity solutions to the boundary-value problems of dynamic response under transverse asymmetric load of cross-ply shallow cylindrical panels are presented. The shell panel is simply supported along all four sides and has finite length. The highly coupled partial differential equations are reduced to ordinary differential equations with constant coefficients by means of trigonometric function expansion in the circumferential and axial directions. The resulting ordinary differential equations are solved by Galerkin finite element method. Numerical examples are presented for two (0/90 deg.) and three (0/90/0 deg.) laminations under dynamic loading.