• Title/Summary/Keyword: layered ground

Search Result 171, Processing Time 0.026 seconds

Numerical analysis of deep excavation in layered and asymmetric ground conditions (흙막이 굴착 시 지층 경사의 영향에 대한 수치해석적 분석)

  • Shin, Jong-Ho;Kim, Hak-Moon;Kim, Sang-Hwan;Kim, Sang-Kil;Nam, Taek-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1260-1268
    • /
    • 2008
  • In case of deep excavation analysis, the theory of beam on elasto-plastic geo-material (elasto-plastic theory) can not consider the inclined ground layers appropriately. It is frequently assumed that the soil layers are parallel to the surface. However, the soil layers are generally inclined and even asymmetric. The common modelling of the asymmetric half section of the excavation system using the elasto-plastic theory, can lead differences from the real behaviour of ground, which has critical significance in case of deep excavation in urban area. In this study, an attempt to find appropriate modelling methods was made by carrying out a comparative study between the FEM and the elasto-plastic analyses. It is shown that in case of the upward-inclined soil profile the elasto-plastic theory may underestimate the performance of retaining structures.

  • PDF

Bearing Capacity Characteristics of the Light Weight Method Used Recycled EPS Beads (폐 EPS 입자를 활용한 경량성토공법의 지지력 평가)

  • Lee, Jongkyu;Lee, Bongjik;Oh, Sewook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.5
    • /
    • pp.21-29
    • /
    • 2006
  • Light weight filling method prevents settlement of ground by decreasing the weight of fills. This method is increasingly used for it's convenience and workability. Styrofoam is increasingly used as a lightweight filling material in soft ground. The beneficial effects of the use of EPS derive from minimizing the stress increment, increasing the bearing capacity and reducing the settlement. For this study, model test and FEM analysis of bearing capacity is carried out composing two-layered ground with clay in the lower layer and lightweight filling material in upper layer. Based on the results obtained here in this study, it is concluded that the use of recycled EPS beads is acceptable lightweight fill. Light weight fills used for disposal is superior to typical embankment fills in bearing capacity.

  • PDF

Examinations on the Reasonable Measuring Methods of the Soil Resistivity for Design of Grounding System (접지시스템의 설계를 위한 대지저항률의 합리적인 측정방법 고찰)

  • Lee, Bok-Hee;Kim, Ki-Bok;Lee, Seung-Hoon;Choi, Jong-Hyuk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.35-41
    • /
    • 2011
  • In order to design effectively the grounding system, it is very important to determine the optimum soil resistivity at the desired location of the connection to earth. This paper deals with the reasonable methods of measuring the soil resistivity where grounding electrodes are buried. The soil resistivity at three test sites with different resistivity of soil were measured as functions of the spacing between the test probes in the Wenner's four-point method and the length of test ground rod in the three-point method. In the case of the three-point method, the length of test ground rod of 2-10[m] in length was appropriate in two-layered soil structure. In the length range of 2-10[m], the results measured by the three-point method using the test ground rod with the length corresponding to the spacing between the test probes of the Wenner's four-point method are in good agreement with the data obtained from the Wenner's four-point method.

Development of Multi-rotational Prosthetic Foot for Lower Limb Amputee (하지 절단자를 위한 다축 회전이 가능한 인공발의 개발)

  • Shin, Hyunjun;Park, Jin-Kuk;Cho, Hyeon-Seok;Ryu, Jei-Cheong;Kim, Shin-Ki
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.4
    • /
    • pp.305-313
    • /
    • 2016
  • Movements of the lower limb are important for normal walking and smooth oscillation of the center of gravity. The ankle rotations such as dorsi-flexion, plantar-flexion, inversion and eversion allows the foot to accommodate to ground during level ground walking. Current below knee (B/K) prostheses are used for replacing amputated ankle, and make it possible for amputees to walk again. However, most of amputees with B/K prostheses often experience a loss of terrain adaptability as well as stability because of limited ankle rotation. This study is focused on the development of multi-rotational prosthetic foot for lower limb amputee. Our prosthesis is possible for amputees to easily walk in level ground by rotating ankle joint in sagittal plane and adapt to the abnormal terrain with ankle rotation in coronal plane. The resistance of ankle joint in the direction of dorsi/plantar-flexion can be manually regulated by hydraulic damper with controllable nozzle. Furthermore, double layered rubber induce the prosthesis adapt to irregular ground by tilting itself in direction of eversion and inversion. The experimental results highlights the potential that our prosthesis induce a normal gait for below knee amputee.

A Study on Predominant Periods and Attenuation Characteristics of Ground Motion (지반 탁월주기와 지반 운동특성에 관한 연구)

  • Kim, So-Gu;Cha, Jeong-Sik;Jeong, Hyeong-Sik
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.139-156
    • /
    • 1995
  • A set of field investigations was performed to estimate accurately the predominant periods of seismic 8round motions and the attenuation characteristics of the seismic ground vibration. Predominant periods of ground motions were estimated from the measurement of the continuous microseismic vibratins of certain periods, inherent in the ground and in the buildings, utilizing the high sensitivity digital velocity seismometer consisting of 3-component geophones and a digital seismograph. Estimated predominant periods of microseismic vibraion of the ground(measured on'the ground surface) and the building (measured on the second floor) were in the range of 0.18~0.235 sec. and 0.26~0.31 sec. respectively. The subsurface structure of the site ground was surveyed by the seismic refraction method utilizing the digital seismicwave probing system. The ground structure was found to be a two-layered system : an upper top soil layer of 7m in thickness with the P-wave velocity of 662m1sec and a lower layer of silty-clayey soils with the P -wave velocity of 2210m1 sec. The attenuation characteristics of the seismic ground vibrations were determined by the amplitude decay measurement method us;ng the Seisgun, which produces strong artificial seismic energy. Measured spatial attenuation coefficients of the ground vibration in vertical(Z) longitudinal(X), transverse(Y) direction were 0.1137, 0.0025, and 0.0290 respectively. Estimated Spartial QP's (inverse of the specific dissipation constant w.r.t. shear waved of X, Y, and Z directions were in the range of 5.913~7.575, 32.371~41.452, 2.794~3.579 re spectively. This indicates that aseimic design of the structures on the site should take stronger consideration regarding the earthquake resistance characteristics of the structures against longitudinal ground motion.

  • PDF

A Study on the Dynamic Behavior of Vertical Shaft in Multi-Layered Soil (다층지반에서의 수직구 동적 거동 분석)

  • Kim, Yong Min;Jeong, Sang Seom;Kim, Kyoung Yul;Lee, Yong Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4C
    • /
    • pp.109-116
    • /
    • 2011
  • In this study, dynamic response of a vertical shaft subjected to seismic loads was evaluated by three-dimensional Finite Element (FE) approach. The emphasis was on quantifying the ground conditions, input motions and direction of motions. A series of parametric analyses were carried out. From the results of FE analysis, more than 1.7 times increase in shear force and bending moment is obtained when the stiff layer was thinker than the soft layer. And all of the maximum values were occurred near the interface between the soil layers. The dynamic behavior of vertical shaft was significantly influenced by the different frequencies of the input motion, and normalized acceleration of surrounding soil was 3 times larger than vertical shaft.

Effects of cow manure compost on anion elution patterns and hydraulic conductivity (우분퇴비 처리에 따른 토양내 음이온의 용출특성과 투수특성 변화)

  • 정덕영;김필주;박무언;이병렬;김건엽
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1996.11a
    • /
    • pp.131-139
    • /
    • 1996
  • To quantitatively investigate the effects of manure compost on the soil and water environment including ground water the elution patterns of anions and hydraulic conductivity wore estimated with four different depth(15, 30, 45 60cm) and four variable ratio of compost treatment(0, 2, 4, 6%) through soil column test. 1. There were over 95% of elution of chloride and nitrate within 0.1 pore volume(PV), and sulfate within 0.2 PV. With 2 ton/10a of cow manure compost treatment recommended total 40 kg/10a of anions added was recovered as effluent at the amount of 17kg chloride, 5.4kg nitrate, and 13.2kg sulfate, respectively However, phosphate rarely recovered in the effluent due to the strong affinity for sorption sites in soils. 2. In multi-layered soil column the maximum peaks of each anion eluted were retardated with increasing soil depth and the amount of organic matter(OM) treatment. 3. With increasing OM up to 2% the saturated hydraulic conductivity(SHC) was greatly decreased, but the slight decrease in SHC was found by addition of OM greater than 4%. In multi-layered soil column SHC was more effected by the lower SHV layer than by that of the higher.

  • PDF

Influence of Changing Coefficient of Consolidation and Layered Condition on Consolidation Behavior (압밀계수변화 및 지층조건이 압밀현상에 미치는 영향)

  • Jeon, Je-Sung;Koo, Ja-Kap;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.147-157
    • /
    • 2005
  • In this study, consolidation analysis methods reflecting various ground condition and changing coefficient of consolidation with consolidation process are presented. Research activities include development of numerical program consists of two parts considering vertical drainage only and both drainage condition with vertical and radial direction. Also, interface equation of adjacent two layers and function for changing coefficient of consolidation are added to developed program. This paper presents the results from a detailed consolidation analyses, which explores consolidation process with time in varying layered system and changing coefficient of consolidation

Dynamic Response Characteristics for Two-layered Trackbed Structure by Train Load (열차하중에 의한 이층노반구조의 동적 응답특성)

  • Lee, Il-Wha
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.2
    • /
    • pp.160-166
    • /
    • 2011
  • It is difficult to clarify the dynamic response characteristics of trackbed because of various environmental conditions. However, track irregularity be affected by ununiformed bearing capacity and its dynamic response, study for dynamic response characteristics is required to investigate the cause of track irregularity and countermeasure. In this paper, the response variation for dominant frequency and vibration energy by trackbed structure and material stiffness are investigated. The analysis section is two layered ground structure that is comprised of trackbed and soft rock. This structure amplifies the energy of dominant range easily. It is evaluated to affect track irregularity on comparing by theoritical, analytical and empirical method for dynamic response of the trackbed.

Empirical Model of Via-Hole Structures in High-Count Multi-Layered Printed Circuit Board (HCML 배선기판에서 비아홀 구조에 대한 경험적 모델)

  • Kim, Young-Woo;Lim, Yeong-Seog
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.12
    • /
    • pp.55-67
    • /
    • 2010
  • The electrical properties of a back drilled via-hole (BDH) without the open-stub and the plated through via-hole (PTH) with the open-stub, which is called the conventional structure, in a high-count multi~layered (HCML) printed circuit board (PCB) were investigated for a high-speed digital system, and a selected inner layer to transmit a high-speed signal was farthest away from the side to mount the component. Within 10 GHz of the broadband frequency, a design of experiment (DOE) methodology was carried out with three cause factors of each via-hole structure, which were the distance between the via-holes, the dimensions of drilling pad and the anti-pad in the ground plane, and then the relation between cause and result factors which were the maximum return loss, the half-power frequency, and the minimum insertion loss was analyzed. Subsequently, the empirical formulae resulting in a macro model were extracted and compared with the experiment results. Even, out of the cause range, the calculated results obtained from the macro model can be also matched with the measured results within 5 % of the error.