• Title/Summary/Keyword: layered cellular automata

Search Result 4, Processing Time 0.016 seconds

A New Public Key Encryption Scheme based on Layered Cellular Automata

  • Zhang, Xing;Lu, Rongxing;Zhang, Hong;Xu, Chungen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3572-3590
    • /
    • 2014
  • Cellular automata (CA) based cryptosystem has been studied for almost three decades, yet most of previously reported researches focus on the symmetric key encryption schemes. Up to now, few CA based public key encryption scheme has been proposed. To fill the gap, in this paper, we propose a new public key encryption scheme based on layered cellular automata (LCA). Specifically, in the proposed scheme, based on the T-shaped neighborhood structure, we combine four one-dimensional reversible CAs (set as the private key) to form the transition rules of a two-dimension CA, where the two-dimension CA is set as the corresponding public key. Based on the hardness assumption of the Decisional Dependent CA problem in LCA, we formally prove the proposed scheme is indistinguishably secure against the chosen-plaintext attack (IND-CPA). In addition, we also use a numeric example to demonstrate its feasibility. Finally, analysis of key space and time efficiency are also carried out along with RSA-1024, and the simulation results demonstrate that our proposed scheme is more efficient.

Reverse Iterative Image Encryption Scheme Using 8-layer Cellular Automata

  • Zhang, Xing;Zhang, Hong;Xu, Chungen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3397-3413
    • /
    • 2016
  • Considering that the layered cellular automata (LCA) are naturally fit for representing image data in various applications, a novel reverse iterative image encryption scheme based on LCA is proposed. Specifically, the plain image is set as the final configuration of an 8-layer CA, and some sequences derived from a random sequence are set as the pre-final configuration, which ensure that the same plain image will never be encrypted in the same way when encrypted many times. Then, this LCA is backward evolved by following some reversible two order rules, which are generated with the aid of a newly defined T-shaped neighborhood. The cipher image is obtained from the recovered initial configuration. Several analyses and experimental results show that the proposed scheme possesses a high security level and executive performance.

Optimal lay-up of hybrid composite beams, plates and shells using cellular genetic algorithm

  • Rajasekaran, S.;Nalinaa, K.;Greeshma, S.;Poornima, N.S.;Kumar, V. Vinoop
    • Structural Engineering and Mechanics
    • /
    • v.16 no.5
    • /
    • pp.557-580
    • /
    • 2003
  • Laminated composite structures find wide range of applications in many branches of technology. They are much suited for weight sensitive structures (like aircraft) where thinner and lighter members made of advanced fiber reinforced composite materials are used. The orientations of fiber direction in layers and number of layers and the thickness of the layers as well as material of composites play a major role in determining the strength and stiffness. Thus the basic design problem is to determine the optimum stacking sequence in terms of laminate thickness, material and fiber orientation. In this paper, a new optimization technique called Cellular Automata (CA) has been combined with Genetic Algorithm (GA) to develop a different search and optimization algorithm, known as Cellular Genetic Algorithm (CGA), which considers the laminate thickness, angle of fiber orientation and the fiber material as discrete variables. This CGA has been successfully applied to obtain the optimal fiber orientation, thickness and material lay-up for multi-layered composite hybrid beams plates and shells subjected to static buckling and dynamic constraints.

Using a Spatial Databases for Indoor Location Based Services (실내위치기반서비스를 위한 공간데이터베이스 활용기법)

  • Cho, Yong-Joo;Kim, Hye-Young;Jun, Chul-Min
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.157-166
    • /
    • 2009
  • There is a growing interest in ubiquitous-related research and applications. Among them, GPS-based LBS have been developed and used actively. Recently, with the increase of large size buildings and disastrous events, indoor spaces are getting attention and related research activities are being carried out. Core technologies regarding indoor applications may include 3D indoor data modeling and localization sensor techniques that can integrate with indoor data. However, these technologies have not been standardized and established enough to be applied to indoor implementation. Thus, in this paper, we propose a method to build a relatively simple 3D indoor data modeling technique that can be applied to indoor location based applications. The proposed model takes the form of 2D-based multi-layered structure and has capability for 2D and 3D visualization. We tested three prototype applications using the proposed model; CA(cellular automata)-based 3D evacuation simulation, network-based routing, and indoor moving objects tracking using a stereo camera.

  • PDF