• Title/Summary/Keyword: layered approach

Search Result 296, Processing Time 0.026 seconds

The Study on Notch Strength Characteristics with Circular Hole Notch in A17075/CFRP Layered Composites (원공노치를 갖는 A17075/CFRP 적층 복합재의 노치강도 특성에 관한 연구)

  • 이제헌;김영환;박준수;윤한기
    • Composites Research
    • /
    • v.13 no.3
    • /
    • pp.58-66
    • /
    • 2000
  • CARALL(Carbon fiber reinforced aluminum laminates) was fabricated with CFRP prepreg and A17075, using a autoclave. The mechanical properties of three samples i.e. A17075, CFRP and CARALL were also investigated as a function of size in circular holes. Theoretical approach into analysing mechanical behaviors near the circular hole notch was carried out to compare with experimental data, furthermore. By the adhesive bonding of A17075 to CFRP, abrupt strength reduction was prevented. From the consideration of modified point stress failure criterion, predicted results was well consistent with the experimental one.

  • PDF

Fabrication of Pre-Exfoliated Clay Masterbatch via Exfoliation-Adsorption of Polystyrene Nanobeads

  • Khvan, Svetlana;Kim, Jun-Kyung;Lee, Sang-Soo
    • Macromolecular Research
    • /
    • v.15 no.1
    • /
    • pp.51-58
    • /
    • 2007
  • The approach studied in the present work produced an exfoliated state of clay layers via confinement of the charged nano-sized polystyrene (PS) beads within the gallery of swollen pristine clay. It was demonstrated that adsorption of the polymer nanobeads dramatically promotes expansion of the clay gallery. A comparative study of incorporation was conducted by employing organo-modified clay along with two different colloid polymer systems: electrostatically stabilized PS nanobeads and cationic monomer-grafted PS nanobeads. The mechanism of adsorption of the monomer-grafted polymer beads onto clay via cationic exchange between the alkyl ammonium group of the polymer nanobeads and the interlayer sodium cation of the layered silicate was verified by using several techniques. As distinct from the polymer nanobeads formed using conventional miniemulsion polymerization method, competitive adsorption of stabilizing surfactant molecules was be prevented by grafting the surface functional groups into the polymer chain, thereby supporting the observed effective adsorption of the polymer beads. The presence of surface functional groups that support the establishment of strong polymer-clay interactions was suggested to improve the compatibility of the clay with the polymer matrix and eventually play a crucial role in the performance of the final nanocomposites.

Breast Reduction through an Inframammary Incision (유방밑주름절개식 유방축소수술)

  • Hong, Yoon-Gi;Sim, Hyung-Bo
    • Archives of Plastic Surgery
    • /
    • v.37 no.2
    • /
    • pp.169-174
    • /
    • 2010
  • Purpose: Reduction mammaplasty is a procedure with a relatively high patient satisfaction rate, however, associated scarring around the areola can be a serious problem. This study proposes a new modification of the breast reduction procedure by means of an inframammary incision alone. Methods: The breast is marked out preoperatively with standing position. Under the general anesthesia, an inframammary incision of approximately 7 - 8 cm is done. The subcutaneous plane is made in the lower pole of the breast, then the subglandular plane is entered and a sharp dissection is made up to 2 cm below the areola. The breast is mobilized from the chest wall and a cone-shaped parenchyme is removed in en-block except from the retroareolar central part. The remaining both pillars are gathered together with absorbable sutures and the base of the gland is narrowed to project the breast forward. The wound is closed in a layered fashion and taping of the breast mound is applied to redistribute the breast skin. Results: 21 patients (36 breasts) underwent this procedure from December 2004 to December 2009. Average follow up was 9 months (ranged from 6 months to 12 months). No major complication occurred. Most patients were pleased with the breast size, shape, and scars. However, 2 patients complained their hypertrophic scars which were corrected by revision. Conclusion: This technique is a simple approach to mild to moderate breast reduction through an inframammary incision alone. And, this technique provides an option with minimal complications and invisible scarring, which is especially important in the young patient group.

Structural Behavior Analysis of Two-way RC Slabs by p-Version Nonlinear Finite Element Model (p-Version 비선형 유한요소모텔에 의한 2방향 철근 콘크리트 슬래브의 역학적 거동해석)

  • Cho, Jin-Goo;Park, Jin-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.4
    • /
    • pp.15-24
    • /
    • 2005
  • This study is focused on modeling to predict the behavior of two-way RC slabs. A new finite element model will be presented to analyze the nonlinear behavior of RC slabs. The numerical approach is based on the p-version degenerate shell element including theory of anisotropic laminated composites, theory of materially and geometrically nonlinear plates. In the nonlinear formulation of this model, the total Lagrangian formulation is adopted with large deflections and moderate rotations being accounted for in the sense of von Karman hypothesis. The material model is based on the Kuper's yield criterion, hardening rule, and crushing condition. The validity of the proposed p-version nonlinear RC finite element model is demonstrated through the load-deflection curves and the ultimate loads. It is shown that the proposed model is able to adequately predict the deflection and ultimate load of two-way slabs with respect to steel arrangements and steel ratios.

Nonlinear dynamic analysis of RC frames using cyclic moment-curvature relation

  • Kwak, Hyo-Gyoung;Kim, Sun-Pil;Kim, Ji-Eun
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.357-378
    • /
    • 2004
  • Nonlinear dynamic analysis of a reinforced concrete (RC) frame under earthquake loading is performed in this paper on the basis of a hysteretic moment-curvature relation. Unlike previous analytical moment-curvature relations which take into account the flexural deformation only with the perfect-bond assumption, by introducing an equivalent flexural stiffness, the proposed relation considers the rigid-body-motion due to anchorage slip at the fixed end, which accounts for more than 50% of the total deformation. The advantage of the proposed relation, compared with both the layered section approach and the multi-component model, may be the ease of its application to a complex structure composed of many elements and on the reduction in calculation time and memory space. Describing the structural response more exactly becomes possible through the use of curved unloading and reloading branches inferred from the stress-strain relation of steel and consideration of the pinching effect caused by axial force. Finally, the applicability of the proposed model to the nonlinear dynamic analysis of RC structures is established through correlation studies between analytical and experimental results.

A Hierarchical Bayesian Network for Real-Time Continuous Hand Gesture Recognition (연속적인 손 제스처의 실시간 인식을 위한 계층적 베이지안 네트워크)

  • Huh, Sung-Ju;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.12
    • /
    • pp.1028-1033
    • /
    • 2009
  • This paper presents a real-time hand gesture recognition approach for controlling a computer. We define hand gestures as continuous hand postures and their movements for easy expression of various gestures and propose a Two-layered Bayesian Network (TBN) to recognize those gestures. The proposed method can compensate an incorrectly recognized hand posture and its location via the preceding and following information. In order to vertify the usefulness of the proposed method, we implemented a Virtual Mouse interface, the gesture-based interface of a physical mouse device. In experiments, the proposed method showed a recognition rate of 94.8% and 88.1% for a simple and cluttered background, respectively. This outperforms the previous HMM-based method, which had results of 92.4% and 83.3%, respectively, under the same conditions.

APPLICATION OF HIGH RESOLUTION SATELLITE IMAGERY ON X3D-BASED SEMANTIC WEB USING SMART GRAPHICS

  • Kim, Hak-Hoon;Lee, Kiwon
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.586-589
    • /
    • 2006
  • High resolution satellite imagery is regarded as one of the important data sets to engineering application, as well as conventional scientific application. However, despite this general view, there are a few target applications using this information. In this study, the possibility for the future wide uses in associated with smart graphics of this information is investigated. The concept of smart graphics can be termed intelligent graphics with XML-based structure and knowledge related to semantic web, which is a useful component for the data dissemination framework model in a multi-layered web-based application. In the first step in this study, high resolution imagery is transformed to GML (Geographic Markup Language)-based structure with attribute schema and geo-references. In the second, this information is linked with GIS data sets, and this fused data set is represented in the X3D (eXtensible 3D), ISO-based web 3D graphic standard, with styling attributes, in the next stop. The main advantages of this approach using GML and X3D are the flourished representations of a source data according to user/clients’ needs and structured 3D visualization linked with other XML-based application. As for the demonstration of this scheme, 3D urban modelling case with actual data sets is presented.

  • PDF

Analysis of side-plated reinforced concrete beams with partial interaction

  • Siu, W.H.;Su, R.K.L.
    • Computers and Concrete
    • /
    • v.8 no.1
    • /
    • pp.71-96
    • /
    • 2011
  • Existing reinforced concrete (RC) beams can be strengthened with externally bolted steel plates to the sides of beams. The effectiveness of this type of bolted side-plate (BSP) beam can however be affected by partial interaction between the steel plates and RC beams due to the mechanical slip of bolts. To avoid over-estimation of the flexural strength and ensure accurate prediction of the load-deformation response of the beams, the effect of partial interaction has to be properly considered. In this paper, a special non-linear macro-finite-element model that takes into account the effects of partial interaction is proposed. The RC beam and the steel plates are modelled as two different elements, interacting through discrete groups of bolts. A layered method is adopted for the formulation of the RC beam and steel plate elements, while a special non-linear model based on a kinematic hardening assumption for the bolts is used to simulate the bolt group effect. The computer program SiBAN was developed based on the proposed approach. Comparison with the available experimental results shows that SiBAN can accurately predict the partial interaction behaviour of the BSP beams. Further numerical simulations show that the interaction between the RC beam and the steel plates is greatly reduced by the formation of plastic hinges and should be considered in analyses of the strengthened beams.

Autonomous Navigation Motion Control of Mobile Robots using Hybrid System Control Method (하이브리드 시스템 제어 방법을 이용한 이동로봇의 자율 추행 동작제어)

  • Lee, Yong-Mi;Im, Mi-Seop;Im, Jun-Hong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.5
    • /
    • pp.182-189
    • /
    • 2002
  • This paper presents a framework of hybrid dynamic control systems for the motion control of wheeled mobile robot systems with nonholonomic constraints. The hybrid control system has the 3-layered hierarchical structure: digital automata for the higher process, mobile robot system for the lower process, and the interface as the interaction process between the continuous dynamics and the discrete dynamics. In the hybrid control architecture of mobile robot, the continuous dynamics of mobile robots are modeled by the switched systems. The abstract model and digital automata for the motion control are developed. In high level, the discrete states are defined by using the sensor-based search windows and the reference motions of a mobile robot in low level are specified in the abstracted motions. The mobile robots can perform both the motion planning and autonomous maneuvering with obstacle avoidance in indoor navigation problem. Simulation and experimental results show that hybrid system approach is an effective method for the autonomous maneuvering in indoor environments

Rapid Manufacturing of Large Object by Splitting Solid Model in VLM-ST (VLM-ST 공정에서 입체 절단을 이용한 대형 물체의 쾌속 제작)

  • 이상호;안동규;김효찬;양동열;채희창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.50-53
    • /
    • 2003
  • Most companies use technologies such as stereolithography, selective laser sintering, and fused deposition modeling to make parts for such small consumer products as telephones, heads, and shoes. The largest part that the existing RP systems can make is only 600 mm in length. Because most RP systems build parts by depositing, solidifying, or sintering material point-by-point, making larger objects takes a long time. and in many cases, large objects won't fit the build size. A new effective thick-layered RP process. Transfer type Variable Lamination Manufacturing using expandable polystyrene foam (VLM-ST) has been developed with thick layers and sloped surfaces. In this paper, a scaledown model of F16 Fighter with the length of 800 mm is rapidly fabricated using the VLM-ST process. In order to build a CAD model of F16 larger than 600 mm in length, the approach in VLM-ST is to build larger parts in multiple sub-parts and then glue them together. The fabricated result shows that the VLM-ST process employing thick layers and sloped surfaces is adequate for creating the real-sized large objects in the diverse fields such as automobiles, electric home appliances, electronics. and etc.

  • PDF