Sphere decoding (SD) for multiple-input and multiple-output systems is a well-recognized approach for achieving near-maximum likelihood performance with reduced complexity. SD is a tree search process, whereby a large number of nodes can be searched in an effort to find an estimation of a transmitted symbol vector. In this paper, a simple and generalized approach called layer pruning is proposed to achieve complexity reduction in SD. Pruning a layer from a search process reduces the total number of nodes in a sphere search. The symbols corresponding to the pruned layer are obtained by adopting a QRM-MLD receiver. Simulation results show that the proposed method reduces the number of nodes to be searched for decoding the transmitted symbols by maintaining negligible performance loss. The proposed technique reduces the complexity by 35% to 42% in the low and medium signal-to-noise ratio regime. To demonstrate the potential of our method, we compare the results with another well-known method - namely, probabilistic tree pruning SD.
Lithium-ion batteries are actively used in various industrial sites such as field robots, drones, and electric vehicles due to their high energy efficiency, light weight, long life span, and low self-discharge rate. When using a lithium-ion battery in a field, it is important to accurately estimate the SoC (State of Charge) of batteries to prevent damage. In recent years, SoC estimation using data-based artificial neural networks has been in the spotlight, but it has been difficult to deploy in the embedded board environment at the actual site because the computation is heavy and complex. To solve this problem, neural network lightening technologies such as network pruning have recently attracted attention. When pruning a neural network, the performance varies depending on which layer and how much pruning is performed. In this paper, we introduce an optimized pruning technique by improving the existing pruning method, and perform a comparative experiment to analyze the results.
본 연구에서는 ART2 신경회로망의 성능을 개선하기 위한 계층적 구조를 제안하고, 구성된 클러스터에 대하여 적합도(fitness) 선택을 통한 빠르고 효과적인 패턴 분류 모델(HART2)을 제안한다. 본 논문에서 제안하는 신경회로망은 비지도 학습을 통하여 대략적으로 1차 클러스터를 형성하고, 이 각각의 1차 클러스터로 분류된 패턴에 대해 지도학습을 통한 2군 클러스터를 생성하여 패턴을 분류하는 계층적 신경회로망이다. 이 신경회로망을 이용한 패턴분류 과정은 먼저 입력패턴을 1차 클러스터와 비교하여 유사한 몇 개의 1차 클러스터를 적합도에 따라 선택한다. 이때, 입력패턴과 클러스터들간의 상대 측정 거리비에 기반한 적합도 함수를 도입하여 1차 클러스터에 연결된 클러스터들을 Pruning 함으로써 계층적인 네트워크에서의 속도 향상과 정확성을 추구하였다. 마지막으로 입력패턴과 선택된 1차 클러스터에 연결된 2차 클러스터와의 비교를 통해 최종적으로 패턴을 분류하게 된다. 본 논문의 효율성을 검증하기 위하여 22종의 한글 및 영어 글꼴에 대한 숫자 데이타를 다양한 형태로 변형시켜 확장된 테스트 패턴에 대하여 실험해 본 결과 제안된 신경회로망의 패턴 분류 능력의 우수함을 증명하였다
This paper introduces model compression algorithms which make a deep neural network smaller and faster for embedded systems. The model compression algorithms can be largely categorized into pruning, quantization and knowledge distillation. In this study, gradual pruning, quantization aware training, and knowledge distillation which learns the activation boundary in the hidden layer of the teacher neural network are integrated. As a large deep neural network is compressed and accelerated by these algorithms, embedded computing boards can run the deep neural network much faster with less memory usage while preserving the reasonable accuracy. To evaluate the performance of the compressed neural networks, we evaluate the size, latency and accuracy of the deep neural network, DenseNet201, for image classification with CIFAR-10 dataset on the NVIDIA Jetson Xavier.
딥 러닝 모델 사용에 있어서, 일반적인 사용자가 이용할 수 있는 하드웨어 리소스는 제한적이기 때문에 기존 모델을 경량화 할 수 있는 프루닝 방법을 통해 제한적인 리소스를 효과적으로 활용할 수 있도록 한다. 그 방법으로, 여러 딥 러닝 모델들 중 비교적 파라미터 수가 많은 것으로 알려진 GAN 아키텍처에 네트워크 프루닝을 적용함으로써 비교적 무거운 모델을 적은 파라미터를 통해 학습할 수 있는 방법을 제시한다. 또한, 본 논문을 통해 기존의 SRGAN 논문에서 가장 효과적인 결과로 제시했던 16 개의 residual block 의 개수를 실제로 줄여 봄으로써 기존 논문에서 제시했던 결과와의 차이에 대해 서술한다.
본 논문에서는 패턴 분류를 위한 새로운 학습 알고리즘을 소개한다. 이 알고리즘은 학습 데이터 집합에 포함된 오류 때문에 네트워크 구조가 너무 복잡하게 되는 점증적 학습 알고리즘의 문제를 해결하기 위해 고안되었다. 이 문제를 위한 접근 방법으로 미리 정의된 판단기준을 가지고 학습 과정을 중단하는 전지 방법을 사용한다. 이 과정에서 적절한 처리과정에 의해 3층 전향구조를 가지는 반복적 모델이 점증적 모델로부터 유도된다 여기서 이 네트워크 구조가 위층과 아래층 사이에 완전연결이 아니라는 점을 주목한다. 전지 방법의 효율성을 확인하기 위해 이 네트워크는 EBP로 다시 학습한다. 이 결과로부터 제안된 알고리즘이 시스템 성능과 네트워크 구조를 이루는 노드의 수 면에서 효과적임을 발견할 수 있다.
CNN은 객체의 특징을 추출하는 과정에서 많은 계산량과 메모리를 요구하고 있다. 또한 사용자에 의해 네트워크가 고정되어 학습되기 때문에 학습 도중에 네트워크의 형태를 수정할 수 없다는 것과 컴퓨팅 자원이 부족한 모바일 디바이스에서 사용하기 어렵다는 단점이 있다. 이러한 문제점들을 해결하기 위해, 우리는 사전 학습된 가중치 파일에 가지치기 방법을 적용하여 연산량과 메모리 요구량을 줄이고자 한다. 이 방법은 3단계로 이루어져 있다. 먼저, 기존에 학습된 네트워크 파일의 모든 가중치를 각 계층 별로 불러온다. 두 번째로, 각 계층의 가중치에 절댓값을 취한 후 평균을 구한다. 평균을 임계값으로 설정한 뒤, 임계 값 이하 가중치를 제거한다. 마지막으로 가지치기 방법을 적용한 네트워크 파일을 재학습한다. 우리는 LeNet-5와 AlexNet을 대상으로 실험을 하였으며, LeNet-5에서 31x, AlexNet에서 12x의 압축률을 달성 하였다
최근, 기존의 통계적 분석방법과는 달리 시계열 데이터를 이용하여 미래의 연속적인 지배의 법칙을 예측하기 위한 신경회로망 연구가 진행되고 있다. 본 논문에서는 빠르고 정확한 기상예측을 위하여 초기 임의 설계된 신경회로망의 은닉층중과(過)설계된 은닉노드를 제거하는 Pruning 알고리즘을 제안하며, 이 제안한 알고리즘의 효율성을 증명하기 위하여 1987년부터 1996년까지의 수집된 기상 데이터 22080건을 이용하여 기상예측 실험을 실행하였다. 실험을 통하여 초기 임의 구성된 $26{\times}50{\times}1$의 신경망은 제안된 pruning 알고리즘을 통하여 $26{\times}2{\times}1$ 구조로 최적화 되었고, 최적화된 신경망($26{\times}2{\times}1$)의 경우 오차온도 ${\pm}0.5^{\circ}C$의 경우 평균 33.55%, ${\pm}1^{\circ}C$의 경우 61.57%로 임의 설계된 구조 ($26{\times}50{\times}1$)dml 29.31%, 54.47%에 비하여 우수하게 나타났고, 또한 계산 횟수에서도 임의 구성 신경망에 비하여 최고 25배이상 계산횟수를 줄일 수 있었다.
신경회로망을 이용하여 주어진 문제를 해결할 때, 문제의 복잡도에 맞는 구조를 찾는 것이 중요하다. 이것은 신경회로망의 복잡도가 학습능력과 일반화 성능에 크게 영향을 주기 때문이다. 그러므로, 문제에 적합한 신경회로망의 구조를 자기 구성적으로 찾는 알고리즘이 유용하다. 본 논문에서는 시그모이드 활성함수를 가지는 전방향 다층 신경회로망에 대하여 주어진 문제에 맞는 구조를 결정하는 알고리즘을 제안한다. 개발된 알고리즘은 구조증가 알고리즘과 연결소거 알고리즘을 이용하여, 주어진 학습 데이터에 대해 가능한 한 작은 구조를 가지며 일반화 성능이 좋은 최적에 가까운 신경회로망을 찾는다. 네 가지 함수 근사화 문제에 적용하여 알고리즘의 성능을 알아본다. 실험 결과에서, 제안한 알고리즘이 기존의 알고리즘 및 고정구조를 갖는 신경회로망과 비교하였을 때 최적 구조에 가까운 신경회로망을 구성하는 것을 확인한다.
은닉노드는 주어진 문제에서 입력패턴(input pattern)들의 특징을 구분해주는 중요한 역할을 한다. 이 때문에 최적의 은닉노드 수로 구성된 신경망 구조가 성능에 가장 큰 영향을 주는 요인으로 중요성이 대두되고 있다. 그러나 역전파(back-propagation) 학습 알고리즘을 기반으로 하여 은닉노드 수를 결정하는데는 문제점이 있다. 은닉노드 수가 너무 적게 지정되면 주어진 입력패턴을 충분히 구분할 수 없게 되어 완전한 학습이 이루어지지 않는 반면, 너무 많이 지정하면 불필요한 연산의 실행과 기억장소의 낭비로 과적응(overfitting)이 일어나 일반성이 떨어져 인식률이 낮아지기 때문이다. 따라서 본 논문에서는 백 프로퍼게이션 알고리즘을 이용하여 학습을 수행하는 다층 신경망의 학습오차 감소와 수렴율 개선을 위하여 신경망을 구성하는 매개변수를 가지고 은닉노드의 특징 값을 구하고, 그 값은 은닉노드를 제거(pruning)하기 위한 평가치로 사용된다. 구해진 특징 값 중 최대 값과 최소 값을 갖는 노드를 감소(pruning)대상에서 제외하고 나머지 은닉노드 특징 값의 평균과 각 은닉노드의 특징 값을 비교하여 평균보다 작은 특징 값을 갖는 은닉노드를 pruning시키므로서 다층 신경망의 최적 구조를 결정하여 신경망의 학습 속도를 개선하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.