• 제목/요약/키워드: layer pruning

검색결과 29건 처리시간 0.025초

Performance Analysis of Layer Pruning on Sphere Decoding in MIMO Systems

  • Karthikeyan, Madurakavi;Saraswady, D.
    • ETRI Journal
    • /
    • 제36권4호
    • /
    • pp.564-571
    • /
    • 2014
  • Sphere decoding (SD) for multiple-input and multiple-output systems is a well-recognized approach for achieving near-maximum likelihood performance with reduced complexity. SD is a tree search process, whereby a large number of nodes can be searched in an effort to find an estimation of a transmitted symbol vector. In this paper, a simple and generalized approach called layer pruning is proposed to achieve complexity reduction in SD. Pruning a layer from a search process reduces the total number of nodes in a sphere search. The symbols corresponding to the pruned layer are obtained by adopting a QRM-MLD receiver. Simulation results show that the proposed method reduces the number of nodes to be searched for decoding the transmitted symbols by maintaining negligible performance loss. The proposed technique reduces the complexity by 35% to 42% in the low and medium signal-to-noise ratio regime. To demonstrate the potential of our method, we compare the results with another well-known method - namely, probabilistic tree pruning SD.

로봇 임베디드 시스템에서 리튬이온 배터리 잔량 추정을 위한 신경망 프루닝 최적화 기법 (Optimized Network Pruning Method for Li-ion Batteries State-of-charge Estimation on Robot Embedded System)

  • 박동현;장희덕;장동의
    • 로봇학회논문지
    • /
    • 제18권1호
    • /
    • pp.88-92
    • /
    • 2023
  • Lithium-ion batteries are actively used in various industrial sites such as field robots, drones, and electric vehicles due to their high energy efficiency, light weight, long life span, and low self-discharge rate. When using a lithium-ion battery in a field, it is important to accurately estimate the SoC (State of Charge) of batteries to prevent damage. In recent years, SoC estimation using data-based artificial neural networks has been in the spotlight, but it has been difficult to deploy in the embedded board environment at the actual site because the computation is heavy and complex. To solve this problem, neural network lightening technologies such as network pruning have recently attracted attention. When pruning a neural network, the performance varies depending on which layer and how much pruning is performed. In this paper, we introduce an optimized pruning technique by improving the existing pruning method, and perform a comparative experiment to analyze the results.

적응적 탐색 전략을 갖춘 계층적 ART2 분류 모델 (Hierarchical Ann Classification Model Combined with the Adaptive Searching Strategy)

  • 김도현;차의영
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권7_8호
    • /
    • pp.649-658
    • /
    • 2003
  • 본 연구에서는 ART2 신경회로망의 성능을 개선하기 위한 계층적 구조를 제안하고, 구성된 클러스터에 대하여 적합도(fitness) 선택을 통한 빠르고 효과적인 패턴 분류 모델(HART2)을 제안한다. 본 논문에서 제안하는 신경회로망은 비지도 학습을 통하여 대략적으로 1차 클러스터를 형성하고, 이 각각의 1차 클러스터로 분류된 패턴에 대해 지도학습을 통한 2군 클러스터를 생성하여 패턴을 분류하는 계층적 신경회로망이다. 이 신경회로망을 이용한 패턴분류 과정은 먼저 입력패턴을 1차 클러스터와 비교하여 유사한 몇 개의 1차 클러스터를 적합도에 따라 선택한다. 이때, 입력패턴과 클러스터들간의 상대 측정 거리비에 기반한 적합도 함수를 도입하여 1차 클러스터에 연결된 클러스터들을 Pruning 함으로써 계층적인 네트워크에서의 속도 향상과 정확성을 추구하였다. 마지막으로 입력패턴과 선택된 1차 클러스터에 연결된 2차 클러스터와의 비교를 통해 최종적으로 패턴을 분류하게 된다. 본 논문의 효율성을 검증하기 위하여 22종의 한글 및 영어 글꼴에 대한 숫자 데이타를 다양한 형태로 변형시켜 확장된 테스트 패턴에 대하여 실험해 본 결과 제안된 신경회로망의 패턴 분류 능력의 우수함을 증명하였다

임베디드 시스템에서의 객체 분류를 위한 인공 신경망 경량화 연구 (Neural Network Model Compression Algorithms for Image Classification in Embedded Systems)

  • 신희중;오현동
    • 로봇학회논문지
    • /
    • 제17권2호
    • /
    • pp.133-141
    • /
    • 2022
  • This paper introduces model compression algorithms which make a deep neural network smaller and faster for embedded systems. The model compression algorithms can be largely categorized into pruning, quantization and knowledge distillation. In this study, gradual pruning, quantization aware training, and knowledge distillation which learns the activation boundary in the hidden layer of the teacher neural network are integrated. As a large deep neural network is compressed and accelerated by these algorithms, embedded computing boards can run the deep neural network much faster with less memory usage while preserving the reasonable accuracy. To evaluate the performance of the compressed neural networks, we evaluate the size, latency and accuracy of the deep neural network, DenseNet201, for image classification with CIFAR-10 dataset on the NVIDIA Jetson Xavier.

레이어 프루닝을 이용한 생성적 적대 신경망 모델 경량화 및 성능 분석 연구 (Optimization And Performance Analysis Via GAN Model Layer Pruning)

  • 김동휘;박상효;배병준;조숙희
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 추계학술대회
    • /
    • pp.80-81
    • /
    • 2021
  • 딥 러닝 모델 사용에 있어서, 일반적인 사용자가 이용할 수 있는 하드웨어 리소스는 제한적이기 때문에 기존 모델을 경량화 할 수 있는 프루닝 방법을 통해 제한적인 리소스를 효과적으로 활용할 수 있도록 한다. 그 방법으로, 여러 딥 러닝 모델들 중 비교적 파라미터 수가 많은 것으로 알려진 GAN 아키텍처에 네트워크 프루닝을 적용함으로써 비교적 무거운 모델을 적은 파라미터를 통해 학습할 수 있는 방법을 제시한다. 또한, 본 논문을 통해 기존의 SRGAN 논문에서 가장 효과적인 결과로 제시했던 16 개의 residual block 의 개수를 실제로 줄여 봄으로써 기존 논문에서 제시했던 결과와의 차이에 대해 서술한다.

  • PDF

점증적 모델에서 최적의 네트워크 구조를 구하기 위한 학습 알고리즘 (An Learning Algorithm to find the Optimized Network Structure in an Incremental Model)

  • 이종찬;조상엽
    • 인터넷정보학회논문지
    • /
    • 제4권5호
    • /
    • pp.69-76
    • /
    • 2003
  • 본 논문에서는 패턴 분류를 위한 새로운 학습 알고리즘을 소개한다. 이 알고리즘은 학습 데이터 집합에 포함된 오류 때문에 네트워크 구조가 너무 복잡하게 되는 점증적 학습 알고리즘의 문제를 해결하기 위해 고안되었다. 이 문제를 위한 접근 방법으로 미리 정의된 판단기준을 가지고 학습 과정을 중단하는 전지 방법을 사용한다. 이 과정에서 적절한 처리과정에 의해 3층 전향구조를 가지는 반복적 모델이 점증적 모델로부터 유도된다 여기서 이 네트워크 구조가 위층과 아래층 사이에 완전연결이 아니라는 점을 주목한다. 전지 방법의 효율성을 확인하기 위해 이 네트워크는 EBP로 다시 학습한다. 이 결과로부터 제안된 알고리즘이 시스템 성능과 네트워크 구조를 이루는 노드의 수 면에서 효과적임을 발견할 수 있다.

  • PDF

지역적 가중치 파라미터 제거를 적용한 CNN 모델 압축 (Apply Locally Weight Parameter Elimination for CNN Model Compression)

  • 임수창;김도연
    • 한국정보통신학회논문지
    • /
    • 제22권9호
    • /
    • pp.1165-1171
    • /
    • 2018
  • CNN은 객체의 특징을 추출하는 과정에서 많은 계산량과 메모리를 요구하고 있다. 또한 사용자에 의해 네트워크가 고정되어 학습되기 때문에 학습 도중에 네트워크의 형태를 수정할 수 없다는 것과 컴퓨팅 자원이 부족한 모바일 디바이스에서 사용하기 어렵다는 단점이 있다. 이러한 문제점들을 해결하기 위해, 우리는 사전 학습된 가중치 파일에 가지치기 방법을 적용하여 연산량과 메모리 요구량을 줄이고자 한다. 이 방법은 3단계로 이루어져 있다. 먼저, 기존에 학습된 네트워크 파일의 모든 가중치를 각 계층 별로 불러온다. 두 번째로, 각 계층의 가중치에 절댓값을 취한 후 평균을 구한다. 평균을 임계값으로 설정한 뒤, 임계 값 이하 가중치를 제거한다. 마지막으로 가지치기 방법을 적용한 네트워크 파일을 재학습한다. 우리는 LeNet-5와 AlexNet을 대상으로 실험을 하였으며, LeNet-5에서 31x, AlexNet에서 12x의 압축률을 달성 하였다

신경망을 이용한 기상예측시스템에서 망구조 최적화를 위한 Pruning 알고리즘 (A Pruning Algorithm for Network Structure Optimization in the Forecasting Climate System Using Neural Network)

  • 이기준;강명아;정채영
    • 한국정보처리학회논문지
    • /
    • 제7권2호
    • /
    • pp.385-391
    • /
    • 2000
  • 최근, 기존의 통계적 분석방법과는 달리 시계열 데이터를 이용하여 미래의 연속적인 지배의 법칙을 예측하기 위한 신경회로망 연구가 진행되고 있다. 본 논문에서는 빠르고 정확한 기상예측을 위하여 초기 임의 설계된 신경회로망의 은닉층중과(過)설계된 은닉노드를 제거하는 Pruning 알고리즘을 제안하며, 이 제안한 알고리즘의 효율성을 증명하기 위하여 1987년부터 1996년까지의 수집된 기상 데이터 22080건을 이용하여 기상예측 실험을 실행하였다. 실험을 통하여 초기 임의 구성된 $26{\times}50{\times}1$의 신경망은 제안된 pruning 알고리즘을 통하여 $26{\times}2{\times}1$ 구조로 최적화 되었고, 최적화된 신경망($26{\times}2{\times}1$)의 경우 오차온도 ${\pm}0.5^{\circ}C$의 경우 평균 33.55%, ${\pm}1^{\circ}C$의 경우 61.57%로 임의 설계된 구조 ($26{\times}50{\times}1$)dml 29.31%, 54.47%에 비하여 우수하게 나타났고, 또한 계산 횟수에서도 임의 구성 신경망에 비하여 최고 25배이상 계산횟수를 줄일 수 있었다.

  • PDF

다층 신경회로망을 위한 자기 구성 알고리즘 (A self-organizing algorithm for multi-layer neural networks)

  • 이종석;김재영;정승범;박철훈
    • 전자공학회논문지CI
    • /
    • 제41권3호
    • /
    • pp.55-65
    • /
    • 2004
  • 신경회로망을 이용하여 주어진 문제를 해결할 때, 문제의 복잡도에 맞는 구조를 찾는 것이 중요하다. 이것은 신경회로망의 복잡도가 학습능력과 일반화 성능에 크게 영향을 주기 때문이다. 그러므로, 문제에 적합한 신경회로망의 구조를 자기 구성적으로 찾는 알고리즘이 유용하다. 본 논문에서는 시그모이드 활성함수를 가지는 전방향 다층 신경회로망에 대하여 주어진 문제에 맞는 구조를 결정하는 알고리즘을 제안한다. 개발된 알고리즘은 구조증가 알고리즘과 연결소거 알고리즘을 이용하여, 주어진 학습 데이터에 대해 가능한 한 작은 구조를 가지며 일반화 성능이 좋은 최적에 가까운 신경회로망을 찾는다. 네 가지 함수 근사화 문제에 적용하여 알고리즘의 성능을 알아본다. 실험 결과에서, 제안한 알고리즘이 기존의 알고리즘 및 고정구조를 갖는 신경회로망과 비교하였을 때 최적 구조에 가까운 신경회로망을 구성하는 것을 확인한다.

은닉노드의 특징 값을 기반으로 한 최적신경망 구조의 BPN성능분석 (Performance Analysis of Optimal Neural Network structural BPN based on character value of Hidden node)

  • 강경아;이기준;정채영
    • 한국컴퓨터정보학회논문지
    • /
    • 제5권2호
    • /
    • pp.30-36
    • /
    • 2000
  • 은닉노드는 주어진 문제에서 입력패턴(input pattern)들의 특징을 구분해주는 중요한 역할을 한다. 이 때문에 최적의 은닉노드 수로 구성된 신경망 구조가 성능에 가장 큰 영향을 주는 요인으로 중요성이 대두되고 있다. 그러나 역전파(back-propagation) 학습 알고리즘을 기반으로 하여 은닉노드 수를 결정하는데는 문제점이 있다. 은닉노드 수가 너무 적게 지정되면 주어진 입력패턴을 충분히 구분할 수 없게 되어 완전한 학습이 이루어지지 않는 반면, 너무 많이 지정하면 불필요한 연산의 실행과 기억장소의 낭비로 과적응(overfitting)이 일어나 일반성이 떨어져 인식률이 낮아지기 때문이다. 따라서 본 논문에서는 백 프로퍼게이션 알고리즘을 이용하여 학습을 수행하는 다층 신경망의 학습오차 감소와 수렴율 개선을 위하여 신경망을 구성하는 매개변수를 가지고 은닉노드의 특징 값을 구하고, 그 값은 은닉노드를 제거(pruning)하기 위한 평가치로 사용된다. 구해진 특징 값 중 최대 값과 최소 값을 갖는 노드를 감소(pruning)대상에서 제외하고 나머지 은닉노드 특징 값의 평균과 각 은닉노드의 특징 값을 비교하여 평균보다 작은 특징 값을 갖는 은닉노드를 pruning시키므로서 다층 신경망의 최적 구조를 결정하여 신경망의 학습 속도를 개선하고자 한다.

  • PDF