• Title/Summary/Keyword: layer approach

Search Result 1,221, Processing Time 0.027 seconds

A Global Graph-based Approach for Transaction and QoS-aware Service Composition

  • Liu, Hai;Zheng, Zibin;Zhang, Weimin;Ren, Kaijun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.7
    • /
    • pp.1252-1273
    • /
    • 2011
  • In Web Service Composition (WSC) area, services selection aims at selecting an appropriate candidate from a set of functionally-equivalent services to execute the function of each task in an abstract WSC according to their different QoS values. In despite of many related works, few of previous studies consider transactional constraints in QoS-aware WSC, which guarantee reliable execution of Composite Web Service (CWS) that is composed by a number of unpredictable web services. In this paper, we propose a novel global selection-optimal approach in WSC by considering both transactional constraints and end-to-end QoS constraints. With this approach, we firstly identify building rules and the reduction method to build layer-based Directed Acyclic Graph (DAG) model which can model transactional relationships among candidate services. As such, the problem of solving global optimal QoS utility with transactional constraints in WSC can be regarded as a problem of solving single-source shortest path in DAG. After that, we present Graph-building algorithms and an optimal selection algorithm to explain the specific execution procedures. Finally, comprehensive experiments are conducted based on a real-world web service QoS dataset. The experimental results show that our approach has better performance over other competing selection approaches on success ratio and efficiency.

Transmasseteric Approach for Open Reduction and Internal Fixation of Mandible Subcondylar Fracture (깨물근을 통한 하악골 관절돌기하부골절의 관혈적 정복 및 내고정술)

  • Kim, Hak-Soo;Kim, Seong-Eun
    • Archives of Plastic Surgery
    • /
    • v.37 no.2
    • /
    • pp.161-168
    • /
    • 2010
  • Purpose: Surgical approaches to the condylar neck and subcondyle area can cause some morbidity such as, facial nerve injury, time-consuming nature and external scar etc. So many surgeons hesitate using open reduction and internal fixation for the treatment of subcondylar fractures. We report open reduction and internal fixation of subcondylar fractures in 13 adult patients via transmasseteric approach. Methods: From 2007 to 2009, 13 adults with subcondylar fracture of mandible were treated with open reduction and internal fixation via transmasseteric approach. A preauricular incision was extended downwards in a curvilinear fashion in the cervicomastoid skin crease. Skin flap was elevated above the SMAS layer. Masseter muscle was splitted at the anteroinferior edge of the parotid gland. After the fracture was reduced, fixed with appropriate plates and screws. All operation were performed under general anesthesia. Results: Mean follow-up period was 13.3 months. There were no signs and symptoms of facial nerve injury, difficulty in mouth opening, or malocclusion. Dissection time was roughly within 30 minutes. Conclusion: Transmasseteric open reduction and internal fixation of mandible subcondylar fracture can be performed with excellent visualization, and inconspicuous scar. It also offers swift access to the subcondylar area while substatially reducing the risk to the facial nerve and eliminating the complications associated with transparotid approaches.

A Localized Software-based Approach for Fault-Tolerant Ethernet (LSFTE)

  • Vu, Huy Thao;Kim, Se Mog;Pham, Anh Hoang;Rhee, Jong Myung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.3
    • /
    • pp.51-61
    • /
    • 2010
  • Nowadays, there are various networked systems with many computers. In most networked systems, a crucial objective is to keep transmitting and/or receiving data continuously even though failures exist. How can one make a computer continue transmitting and/or receiving data even when there are some errors on a link? Fault-Tolerant Ethernet (FTE) can be a solution to this question. In this paper, we propose a Localized Software-based Fault-Tolerant Ethernet (LSFTE). Our new approach fulfills the general FTE requirements. It takes advantage of redundant cable lines to maintain communication in a faulty environment. A software layer, which uses a simple and effective algorithm, is added above the LAN card driver software to detect and overcome faults. For our approach, there is no need to change the existing hardware or the end-use interfaces. Furthermore, the fault-detection time is reduced significantly compared to the conventional software-based approach.

  • PDF

Design of a Feature-based Multi-viewpoint Design Automation System

  • Lee, Kwang-Hoon;McMahon, Chris A.;Lee, Kwan-H.
    • International Journal of CAD/CAM
    • /
    • v.3 no.1_2
    • /
    • pp.67-75
    • /
    • 2003
  • Viewpoint-dependent feature-based modelling in computer-aided design is developed for the purposes of supporting engineering design representation and automation. The approach of this paper uses a combination of a multi-level modelling approach. This has two stages of mapping between models, and the multi-level model approach is implemented in three-level architecture. Top of this level is a feature-based description for each viewpoint, comprising a combination of form features and other features such as loads and constraints for analysis. The middle level is an executable representation of the feature model. The bottom of this multi-level modelling is a evaluation of a feature-based CAD model obtained by executable feature representations defined in the middle level. The mappings involved in the system comprise firstly, mapping between the top level feature representations associated with different viewpoints, for example for the geometric simplification and addition of boundary conditions associated with moving from a design model to an analysis model, and secondly mapping between the top level and the middle level representations in which the feature model is transformed into the executable representation. Because an executable representation is used as the intermediate layer, the low level evaluation can be active. The example will be implemented with an analysis model which is evaluated and for which results are output. This multi-level modelling approach will be investigated within the framework aimed for the design automation with a feature-based model.

Case series and technical report of nasal floor approach for mesiodens

  • Jeong-Kui Ku;Woo-Young Jeon;Jin-A Baek
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.49 no.4
    • /
    • pp.214-217
    • /
    • 2023
  • Objectives: This case series aims to introduce the nasal floor approach for extracting inverted mesiodens. Materials and Methods: Through a retrospective chart review between January 2022 and February 2023, we included the mesiodens patients using nasal floor approach, and analysis the location of mesiodens from the anterior nasal spine (ANS), total operation time, and complications. Results: Each mesiodens was located 10 to 12 mm from the ANS and was covered with a cortical layer of the nasal floor. All mesiodens were successfully extracted without exposing the adjacent incisors or nasopalatine nerve within 30 minutes from draping to postoperative dressing. Conclusion: The nasal floor approach is an efficient extraction method that reduces bone removal and prevents anatomical damage while removing the mesiodens just below the nasal floor bone.

The design of a single layer antireflection coating on the facet of buried channel waveguide devices using the angular spectrum method and field profiles obtained by the variational method (Variational 방법으로 구한 필드 분포와 Angular Spectrum 방법을 사용한 Buried채널 도파로 소자 단면의 단층 무반사 코팅 설계)

  • 김상택;김형주;김부균
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.1
    • /
    • pp.51-57
    • /
    • 2002
  • We have calculated the optimum refractive index and normalized thickness of a single layer antireflection coating on the facet of buried channel waveguides as a function of waveguide width for several waveguide depths using the angular spectrum method and field profiles obtained by the effective index method (EIM) and the variational method (VM), respectively, and discussed the results. In the area of large waveguide width, the optimum parameters of a single layer antireflection coating obtained by both methods are almost the same. However, as waveguide width decreases, the parameters obtained by the VM approach those of a single layer antireflection coating between cladding layer and air, while those obtained by the EIM do not approach those, and the difference between the two parameters is large. The tolerance maps of the quasi-TE and quasi-TM modes obtained by the VM for square waveguides are located in almost the same area regardless of refractive index contrast, while those obtained by the free space radiation mode (FSRM) method for refractive index contrast of 10% are located in the different area. Thus, we think that the tolerance maps obtained by the VM are more exact than those obtained by the FSRM method.

A Possible Path per Link CBR Algorithm for Interference Avoidance in MPLS Networks

  • Sa-Ngiamsak, Wisitsak;Varakulsiripunth, Ruttikorn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.772-776
    • /
    • 2004
  • This paper proposes an interference avoidance approach for Constraint-Based Routing (CBR) algorithm in the Multi-Protocol Label Switching (MPLS) network. The MPLS network itself has a capability of integrating among any layer-3 protocols and any layer-2 protocols of the OSI model. It is based on the label switching technology, which is fast and flexible switching technique using pre-defined Label Switching Paths (LSPs). The MPLS network is a solution for the Traffic Engineering(TE), Quality of Service (QoS), Virtual Private Network (VPN), and Constraint-Based Routing (CBR) issues. According to the MPLS CBR, routing performance requirements are capability for on-line routing, high network throughput, high network utilization, high network scalability, fast rerouting performance, low percentage of call-setup request blocking, and low calculation complexity. There are many previously proposed algorithms such as minimum hop (MH) algorithm, widest shortest path (WSP) algorithm, and minimum interference routing algorithm (MIRA). The MIRA algorithm is currently seemed to be the best solution for the MPLS routing problem in case of selecting a path with minimum interference level. It achieves lower call-setup request blocking, lower interference level, higher network utilization and higher network throughput. However, it suffers from routing calculation complexity which makes it difficult to real task implementation. In this paper, there are three objectives for routing algorithm design, which are minimizing interference levels with other source-destination node pairs, minimizing resource usage by selecting a minimum hop path first, and reducing calculation complexity. The proposed CBR algorithm is based on power factor calculation of total amount of possible path per link and the residual bandwidth in the network. A path with high power factor should be considered as minimum interference path and should be selected for path setup. With the proposed algorithm, all of the three objectives are attained and the approach of selection of a high power factor path could minimize interference level among all source-destination node pairs. The approach of selection of a shortest path from many equal power factor paths approach could minimize the usage of network resource. Then the network has higher resource reservation for future call-setup request. Moreover, the calculation of possible path per link (or interference level indicator) is run only whenever the network topology has been changed. Hence, this approach could reduce routing calculation complexity. The simulation results show that the proposed algorithm has good performance over high network utilization, low call-setup blocking percentage and low routing computation complexity.

  • PDF

Neural Network Active Control of Structures with Earthquake Excitation

  • Cho Hyun Cheol;Fadali M. Sami;Saiidi M. Saiid;Lee Kwon Soon
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.202-210
    • /
    • 2005
  • This paper presents a new neural network control for nonlinear bridge systems with earthquake excitation. We design multi-layer neural network controllers with a single hidden layer. The selection of an optimal number of neurons in the hidden layer is an important design step for control performance. To select an optimal number of hidden neurons, we progressively add one hidden neuron and observe the change in a performance measure given by the weighted sum of the system error and the control force. The number of hidden neurons which minimizes the performance measure is selected for implementation. A neural network was trained for mitigating vibrations of bridge systems caused by El Centro earthquake. We applied the proposed control approach to a single-degree-of-freedom (SDOF) and a two-degree-of-freedom (TDOF) bridge system. We assessed the robustness of the control system using randomly generated earthquake excitations which were not used in training the neural network. Our results show that the neural network controller drastically mitigates the effect of the disturbance.

Characterization of Lateral Type Field Emitters with Carbon-Based Surface Layer

  • Lee, Myoung-Bok;Lee, Jae-Hoon;Kwon, Ki-Rock;Lee, Hyung-Ju;Hahm, Sung-Ho;Lee, Jong-Hyun;Lee, Jung-Hee;Choi, Kyu-Man
    • Journal of Information Display
    • /
    • v.2 no.3
    • /
    • pp.60-65
    • /
    • 2001
  • Lateral type poly-silicon field emitters were fabricated by utilizing the LOCOS (Local Oxidation of Silicon) process. For the implementation 'of an ideal field emission device with quasi-zero tunneling barrier, a new and fundamental approach has used conducted by introducing an intelligent carbon-based thin layer on the cathode tip surface via a field-assisted self-aligning of carbon (FASAC) process. Fundamental lowering of the turn-on field for the electron emission was feasible through the control of both the tip shape and surface barrier height.

  • PDF

Quantum Mechanical Simulation for the Analysis, Optimization and Accelerated Development of Precursors and Processes for Atomic Layer Deposition (ALD)

  • Mustard, Thomas Jeffrey Lomax;Kwak, Hyunwook Shaun;Goldberg, Alexander;Gavartin, Jacob;Morisato, Tsuguo;Yoshidome, Daisuke;Halls, Mathew David
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.317-324
    • /
    • 2016
  • Continued miniaturization and increasingly exact requirements for thin film deposition in the semiconductor industry is driving the search for new effective, efficient, selective precursors and processes. The requirements of defect-free, conformal films, and precise thickness control have focused attention on atomic layer deposition (ALD). ALD precursors so far have been developed through a trial-and-error experimental approach, leveraging the expertise and tribal knowledge of individual research groups. Precursors can show significant variation in performance, depending on specific choice of co-reactant, deposition stage, and processing conditions. The chemical design space for reactive thin film precursors is enormous and there is urgent need for the development of computational approaches to help identify new ligand-metal architectures and functional co-reactants that deliver the required surface activity for next-generation thin-film deposition processes. In this paper we discuss quantum mechanical simulation (e.g. density functional theory, DFT) applied to ALD precursor reactivity and state-of-the-art automated screening approaches to assist experimental efforts leading toward optimized precursors for next-generation ALD processes.