• Title/Summary/Keyword: layer 2

Search Result 19,001, Processing Time 0.052 seconds

A Study for Joining of Silicon Nitride with Crystallized Glass Solder of $SiO_2-Al_2O_3-MgO$ System ($SiO_2-Al_2O_3-MgO$계 결정화 유리 솔더에 의한 질화규소의 접합에 관한 연구)

  • 안병국
    • Journal of Welding and Joining
    • /
    • v.21 no.1
    • /
    • pp.107-113
    • /
    • 2003
  • Joining of $Si_3N_4$ to $Si_3N_4$ with crystallized glass solder was studied. $SiO_2-Al_2O_3-MgO$ glass with $P_2O_5$ as a crystallizing reagent was used as a solder. To improve the hish temperature toughness of joined specimen, two stage heat treatment was applied to Joined sample for the crystallization of joined layer, Two factors, i.e. thickness of soldered layer and crystallization were taken and thier effects on joining strength were investigated by a SEM-EDX observation of joined interface and bending strength both at room and elevated temperatures. Obtained results are summarized as follows: (1) Nitrogen diffused from $Si_3N_4$ to solder during the Joining process. Average amount of nitrogen in soldered layer depended on the thickness of the soldered layer and increased with decrease of the thickness. (2) Joining strength of the specimen having a thinner soldered layer was stronger than that of thicker layer. This can be mainly attributed to the difference of the nitrogen content in the soldered layer. (3) Higher content of nitrogen in solder brought forth higher viscosity of the solder. Hence the crystallization of the solder become more difficult in thinner layer of the solder than thicker one. (4) Thus, the effect of crystallization was evaluated mostly by the thicker layer specimen. Crystallization of soldered layer improved markedly the fracure strength of joining at higher temperatures than the softening temperature of glass solder.

Improvement of dielectric and interface properties of Al/CeO$_2$/Si capacitor by using the metal seed layer and $N_2$ plasma treatment (금속씨앗층과 $N_2$ 플라즈마 처리를 통한 Al/CeO$_2$/Si 커패시터의 유전 및 계면특성 개선)

  • 임동건;곽동주;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.326-329
    • /
    • 2002
  • In this paper, we investigated a feasibility of cerium oxide(CeO$_2$) films as a buffer layer of MFIS(metal ferroelectric insulator semiconductor) type capacitor. CeO$_2$ layer were Prepared by two step process of a low temperature film growth and subsequent RTA (rapid thermal annealing) treatment. By app1ying an ultra thin Ce metal seed layer and N$_2$ Plasma treatment, dielectric and interface properties were improved. It means that unwanted SiO$_2$ layer generation was successfully suppressed at the interface between He buffer layer and Si substrate. The lowest lattice mismatch of CeO$_2$ film was as low as 1.76% and average surface roughness was less than 0.7 m. The Al/CeO$_2$/Si structure shows breakdown electric field of 1.2 MV/cm, dielectric constant of more than 15.1 and interface state densities as low as 1.84${\times}$10$\^$11/ cm$\^$-1/eV$\^$-1/. After N$_2$ plasma treatment, the leakage current was reduced with about 2-order.

  • PDF

Performance and Stability Evaluation of Muscle Activation (EMG) Measurement Electrodes According to Layer Design (근활성도(EMG) 측정 전극 레이어 설계에 따른 성능 및 안정성 평가)

  • Bon-Hak Koo;Dong-Hee Lee;Joo-Yong Kim
    • Science of Emotion and Sensibility
    • /
    • v.26 no.4
    • /
    • pp.41-50
    • /
    • 2023
  • This study aims to develop electromyography (EMG) textile electrodes and assess their performance and signal stability by examining variations in layer count and fabric types. We fabricated the electrodes through layering and pressing techniques, focusing on configurations with different layer counts (Layer-0, Layer-1, and Layer-2). Our findings indicate that layer presence significantly influences muscle activation measurements, with enhanced performance correlated with increased layer numbers. Subsequently, we created electrodes from five distinct fabrics (neoprene, spandex cushion, 100% polyester, nylon spandex, and cotton canvas), each maintaining a Layer-2 structure. In performance tests, nylon spandex fabric, particularly heavier variants, outperformed others, while the spandex cushion electrodes showed superior stability in muscle activation signal acquisition. This research elucidates the connection between electrode performance and factors like layer number and electrode-skin contact area. It suggests a novel approach to electrode design, focusing on layer properties and targeted pressure application on specific sensor areas, rather than uniformly increasing sleeve pressure.

Transparent Electrode Performance of TiO2/ZnS/Ag/ZnS/TiO2 Multi-Layer for PDP Filter (TiO2/ZnS/Ag/ZnS/TiO2 다층막의 PDP 필터용 전극 특성)

  • Oh, Won-Seok;Lee, Seo-Hee;Jang, Gun-Eik;Park, Seong-Wan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.9
    • /
    • pp.681-684
    • /
    • 2010
  • The $TiO_2$/ZnS/Ag/ZnS/$TiO_2$ multilayered structure for the transparent electrodes in plasma display panel was designed by essential macleod program (EMP) and the multilayered film was deposited on a glass substrate by direct-current (DC)/radio-frequency (RF) magnetron sputtering system. During film deposition process, the Ag layer in $TiO_2$/Ag/$TiO_2$ structure became oxidized and the filter characteristic was degraded easily. In this study, ZnS layer was adopted as a diffusion blocking layer between $TiO_2$ and Ag to prevent the oxidation of Ag layer efficiently in $TiO_2$/ZnS/Ag/ZnS/$TiO_2$ structure. Based on the AES depth profiling analysis, the Ag layer was effectively protected by the ZnS layer as compared with the $TiO_2$/Ag/$TiO_2$ multilayered films without ZnS as an antioxidant layer. The 3 times stacked $TiO_2$/ZnS/Ag/ZnS/$TiO_2$ films have low sheet resistance of $1.22{\Omega}/{\square}$ and luminous transmittance was as high as 62% in the visible ranges.

Silicide Formation of Atomic Layer Deposition Co Using Ti and Ru Capping Layer

  • Yoon, Jae-Hong;Lee, Han-Bo-Ram;Gu, Gil-Ho;Park, Chan-Gyung;Kim, Hyung-Jun
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.202-206
    • /
    • 2012
  • $CoSi_2$ was formed through annealing of atomic layer deposition Co thin films. Co ALD was carried out using bis(N,N'-diisopropylacetamidinato) cobalt ($Co(iPr-AMD)_2$) as a precursor and $NH_3$ as a reactant; this reaction produced a highly conformal Co film with low resistivity ($50\;{\mu}{\Omega}cm$). To prevent oxygen contamination, $ex-situ$ sputtered Ti and $in-situ$ ALD Ru were used as capping layers, and the silicide formation prepared by rapid thermal annealing (RTA) was used for comparison. Ru ALD was carried out with (Dimethylcyclopendienyl)(Ethylcyclopentadienyl) Ruthenium ((DMPD)(EtCp)Ru) and $O_2$ as a precursor and reactant, respectively; the resulting material has good conformality of as much as 90% in structure of high aspect ratio. X-ray diffraction showed that $CoSi_2$ was in a poly-crystalline state and formed at over $800^{\circ}C$ of annealing temperature for both cases. To investigate the as-deposited and annealed sample with each capping layer, high resolution scanning transmission electron microscopy (STEM) was employed with electron energy loss spectroscopy (EELS). After annealing, in the case of the Ti capping layer, $CoSi_2$ about 40 nm thick was formed while the $SiO_x$ interlayer, which is the native oxide, became thinner due to oxygen scavenging property of Ti. Although Si diffusion toward the outside occurred in the Ru capping layer case, and the Ru layer was not as good as the sputtered Ti layer, in terms of the lack of scavenging oxygen, the Ru layer prepared by the ALD process, with high conformality, acted as a capping layer, resulting in the prevention of oxidation and the formation of $CoSi_2$.

Layer-specific cholinergic modulation of synaptic transmission in layer 2/3 pyramidal neurons of rat visual cortex

  • Cho, Kwang-Hyun;Lee, Seul-Yi;Joo, Kayoung;Rhie, Duck-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.5
    • /
    • pp.317-328
    • /
    • 2019
  • It is known that top-down associative inputs terminate on distal apical dendrites in layer 1 while bottom-up sensory inputs terminate on perisomatic dendrites of layer 2/3 pyramidal neurons (L2/3 PyNs) in primary sensory cortex. Since studies on synaptic transmission in layer 1 are sparse, we investigated the basic properties and cholinergic modulation of synaptic transmission in layer 1 and compared them to those in perisomatic dendrites of L2/3 PyNs of rat primary visual cortex. Using extracellular stimulations of layer 1 and layer 4, we evoked excitatory postsynaptic current/potential in synapses in distal apical dendrites (L1-EPSC/L1-EPSP) and those in perisomatic dendrites (L4-EPSC/L4-EPSP), respectively. Kinetics of L1-EPSC was slower than that of L4-EPSC. L1-EPSC showed presynaptic depression while L4-EPSC was facilitating. In contrast, inhibitory postsynaptic currents showed similar paired-pulse ratio between layer 1 and layer 4 stimulations with depression only at 100 Hz. Cholinergic stimulation induced presynaptic depression by activating muscarinic receptors in excitatory and inhibitory synapses to similar extents in both inputs. However, nicotinic stimulation enhanced excitatory synaptic transmission by ~20% in L4-EPSC. Rectification index of AMPA receptors and AMPA/NMDA ratio were similar between synapses in distal apical and perisomatic dendrites. These results provide basic properties and cholinergic modulation of synaptic transmission between distal apical and perisomatic dendrites in L2/3 PyNs of the visual cortex, which might be important for controlling information processing balance depending on attentional state.

Thin Film Encapsulation with Organic-Inorganic Nano Laminate using Molecular Layer Deposition and Atomic Layer Deposition

  • Yun, Gwan-Hyeok;Jo, Bo-Ram;Bang, Ji-Hong;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.270-270
    • /
    • 2016
  • We fabricated an organic-inorganic nano laminated encapsulation layer using molecular layer deposition (MLD) combined with atomic layer deposition (ALD). The $Al_2O_3$ inorganic layers as an effective single encapsulation layer were deposited at 80 degree C using ALD with alternating surface-saturation reactions of TMA and $H_2O$. A self-assembled organic layers (SAOLs) were fabricated at the same temperature using MLD. MLD and ALD deposition process were performed in the same reaction chamber. The prepared SAOL-$Al_2O_3$ organic-inorganic nano laminate films exhibited good mechanical stability and excellent encapsulation property. The measurement of water vapor transmission rate (WVTR) was performed with Ca test. We controlled thickness-ratio of organic and inorganic layer, and specific ratio showed a lowest WVTR value. Also this encapsulation layer contained very few pin-holes or defects which were linked in whole area by defect test. To apply into real OLEDs panels, we controlled a film stress from tensile to compressive and flexibility defined as an elastic modulus with organic-inorganic ratio. It has shown that OLEDs panel encapsulated with nano laminate layer exhibits better properties than single layer encapsulated in acceleration conditions. These results indicate that the organic-inorganic nano laminate thin films have high potential for flexible display applications.

  • PDF

Characteristics and Stability of Compositional Convection in Binary Solidification with a Constant Solidification Velocity (일정한 응고속도를 갖는 2성분 응고에서 조성 대류의 특성 및 안정성)

  • Hwang, In Gook
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.199-204
    • /
    • 2014
  • In binary solidification compositional convection in a porous mushy layer influences the quality of the final products. We consider the mushy layer solidifying from below with a constant solidification velocity. The disturbance equations for the mushy layer are derived using linear stability theory. The basic-state temperature fields and the distribution of the porosity in the mushy layer are investigated numerically. When the superheat is large, the thickness of the mushy layer is relatively small compared to the thickness of the thermal boundary layer. With decreasing the superheat the critical Rayleigh number based on the thickness of the mushy layer increases and the mushy layer becomes stable to the compositional convection. The critical Rayleigh number obtained from the continuity conditions of temperature and heat flux at the mush-liquid interface is smaller than that from the isothermal condition at the upper boundary of the mushy layer.

A Plastic BGA Singulation using High Thermal Energy of $2^{nd}$ Harmonic Nd:YAG Laser

  • Lee, Kyoung-Cheol;Baek, Kwang-Yeol;Lee, Cheon
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.6
    • /
    • pp.309-313
    • /
    • 2002
  • In this paper, we have studied minimization of the kerf-width and surface burning, which occurred after the conventional singulation process of the multi-layer BGA board with copper, polyethylene and epoxy glass fiber. The high thermal energy of a pulsed Nd:YAG laser is used to cut the multi-layer board. The most considerable matter in the laser cutting of the multi-layer BGA boards is their different absorption coefficient to the laser beam and their different heat conductivity. The cut mechanism of a multi-layer BGA board using a 2$^{nd}$ harmonic Nd:YAG laser is the thermal vaporization by high temperature rise based on the Gaussian profile and copper melting point. In this experiment, we found that the sacrifice layer and Na blowing are effective in minimizing the surface burning by the reaction between oxygen in the air and the laser beam. In addition, N2 blowing reduces laser energy loss by debris and suppresses surface oxidation. Also, the beam incidence on the epoxy layer compared to polyimide was much more suitable to reduce damage to polyimide with copper wire for the multi layer BGA singulation. When the polyester double-sided tape is used as a sacrifice layer, surface carbonization becomes less. The SEM, non-contact 3D inspector and high-resolution microscope are used to measure cut line-width and surface morphology.

Effect of $CO_2$ Content on the Growth and Corrosion Characteristics of the Compound Layers in Gaseous Nitrocarburized Carbon Steels (가스 질화침탄처리한 탄소강의 화합물층 성장 및 부식특성에 미치는 $CO_2$함량의 영향)

  • Kim, Y.H.;Kim, S.D.;Yoon, H.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.5
    • /
    • pp.219-227
    • /
    • 2002
  • This study has been performed to investigate the effect of $CO_2$ content on the growth characteristics of the compound layer, porous layer and corrosion characteristics of carbon steels after gaseous nitrocarburizing in $70%-NH_3-CO_2-N_2$ at $580^{\circ}C$ for 2.5 hrs. The results obtained from the experiment were the thickness of the compound and porous layers increased with increasing $CO_2$ contents. At the same fixed gas composition the thickness of the compound and porous layer increased with increasing carbon content of the specimens. X-ray diffraction analysis showed that compound layer was mainly consisted of ${\varepsilon}-Fe_{2-3}(N,C)$ and ${\gamma}^{\prime}-Fe_4N$ as the increased with $CO_2$ contents in atmosphere, compound layer was chiefly consisted of ${\varepsilon}-Fe_{2-3}(N,C)$ phase. With increasing $CO_2$ content and total flow rate in gaseous nitrocarburizing, the amount of ${\varepsilon}-Fe_{2-3}(N,C)$ phase in the compound layer was increased. The current density of passivity decreased with increasing $CO_2$ content due to the development of porous layer at the out most surface of ${\varepsilon}-Fe_{2-3}(N,C)$.