• Title/Summary/Keyword: layer 2

Search Result 19,001, Processing Time 0.048 seconds

용액 공정을 통한 HfO2/ZrO2 구조 차이에 따른 Dielectric layer의 특성 변화 분석

  • Kim, Hyeon-Gi;Choe, Byeong-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.312.2-312.2
    • /
    • 2016
  • 본 연구에서는 $HfO_2$$ZrO_2$의 구조적 차이를 통한 Dielectric layer의 특성 변화에 대한 분석을 진행하였다. $HfO_2$$ZrO_2$ layer는 용액 공정을 통해 만들고, 용액의 농도는 0.2 M로 제작하여 Spin Coating으로 소자를 제작하였다. 각 소자들의 구조적인 차이를 위해 $HfO_2$/$HfO_2$, $ZrO_2$/$HfO_2$, $HfO_2$/$ZrO_2$, $ZrO_2$/$ZrO_2$ 층 순서로 제작되었다. 각 소자들의 Capacitance 값은 245.72, 259.81, 294.23, $312.12nF/cm^2$으로 측정 되었고, Leakage current 값은 1.01, 1.79, 0.09, $0.0910-1A/cm^2$으로 다소 높은 값으로 확인되었다. 또한 dielectric constant, k 값이 16.6, 17.6, 19.9, 21.2로 각각의 측정값들 모두 substrate쪽의 dielectric layer에 따라 비슷한 특성을 갖게 되는 것을 확인했다. 이를 통해 Electrode 쪽의 layer보다 Substrate 쪽의 layer의 영향이 더 큰 것을 알 수 있다.

  • PDF

A Study on the Micro-defects Characteristics and Latch-up Immune Structure by RTA in 1MeV P Ion Implantation (1MeV 인 이온 주입시 RTA에 의한 미세결함 특성과 latch-up 면역에 관한 구조 연구)

  • Roh, Byeong-Gyu;Yoon, Seok-Beom
    • Journal of IKEEE
    • /
    • v.2 no.1 s.2
    • /
    • pp.101-107
    • /
    • 1998
  • This paper is studied micro-defect characteristics by phosphorus 1MeV ion implantation and Rs, SRP, SIMS, XTEM for the RTA process was measured and simulated. As the dose is higher, the Rs is lower. When the dose are $1{\times}10^{13}/cm^2,\;5{\times}10^{13}/cm^2,\;1{\times}10^{14}/cm^2$, the Rp are $1.15{\mu}m,\;1.15{\mu},\;1.10{\mu}m$ respectively. As the RTA time is longer, the maximum concentration position is deeper from the surface and the concentration is lower. Before the RTA was done, we didn't observe any defect. But after the RTA process was done, we could observe the RTA process changed the micro-defects into the secondary defects. The simulation using the buried layer and connecting layer structure was performed. As results, the connecting layer had more effect than the buried layer to latch-up immune. Trigger current was more $0.6mA/{\mu}m$ and trigger voltage was 6V at dose $1{\times}10^{14}/cm^2$ and the energy 500KeV of connecting layer Lower connecting layer dose, latch-up immune characteristics was better.

  • PDF

Preparation and Gas Permeability of ZIF-7 Membranes Prepared via Two-step Crystallization Technique

  • Li, Fang;Li, Qiming;Bao, Xinxia;Gui, Jianzhou;Yu, Xiaofei
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.340-346
    • /
    • 2014
  • Continuous and dense ZIF-7 membranes were successfully synthesized on ${\alpha}-Al_2O_3$ porous substrate via two-step crystallization technique. ZIF-7 seeding layer was first deposited on porous ${\alpha}-Al_2O_3$ substrate by in-situ low temperature crystallization, and then ZIF-7 membrane layer can be grown through the secondary high-temperature crystallization. Two synthesis solutions with different concentration were used to prepare ZIF-7 seeding layer and membrane layer on porous ${\alpha}-Al_2O_3$ substrate, respectively. As a result, a continuous and defect-free ZIF-7 membrane layer can be prepared on porous ${\alpha}-Al_2O_3$ substrate, as confirmed by scanning electron microscope. XRD characterization shows that the resulting membrane layer is composed of pure ZIF-7 phase without any impurity. A single gas permeation test of $H_2$, $O_2$, $CH_4$ or $CO_2$ was conducted based on our prepared ZIF-7 membrane. The ZIF-7 membrane exhibited excellent H2 molecular sieving properties due to its suitable pore aperture and defect-free membrane layer.

FORMATION OF IRON SULFIDE BY PLASMA-NITRIDING USING SUBSIDIARY CATHODE

  • Hong, Sung-Pill;Urao, Ryoichi;Takeuchi, Manabu;Kojima, Yoshitaka
    • Journal of Surface Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.615-620
    • /
    • 1996
  • Chromium-Molybdenum steel was plasma-nitrided at 823 K for 10.8 ks in an atmosphere of 30% $N_2$-70% $H_2$ gas under 665 Pa without and with a subsidiary cathode of $MoS_2$ to compare ion-nitriding and plasma-sulfnitriding using subsidiary cathode. When the steel was ion-nitrided without $MoS_2$, iron nitride layer of 4$\mu\textrm{m}$ and nitrogen diffusion layer of 400mm were formed on the steel. A compound layer of 15$\mu\textrm{m}$ and nitrogen diffusion layer of 400$\mu\textrm{m}$ were formed on the surface of the steel plasma-sulfnitrided with subsidiary cathode of $MoS_2$. The compound layer consisted of FeS containing Mo and iron nitrides. The nitrides of $\varepsilon$-$Fe_2$, $_3N$ and $\gamma$-$Fe_4N$ formed under the FeS. The thicker compound layer was formed by plasma-sulfnitriding than ion-nitriding. In plasma-sulfnitriding, the surface hardness was about 730 Hv. The surface hardness of the steel plasma-sulfnitrided with $MoS_2$ was lower than that of ion-nitrided without $MoS_2$. This may be due to the soft FeS layer formed on the surface of the plasma-sulfnitrided steel.

  • PDF

Study on YBCO coated conductor characteristics dependent on deposition method of $CeO_2$ capping layer ($CeO_2$ capping layer의 증착 방법에 따른 YBCO coated conductor 특성 연구)

  • Yang, Joo-Saeng;Ko, Rock-Kil;Kim, Ho-Sup;Ha, Hong-Soo;Park, Yu-Mi;Song, Kyu-Jeong;Oh, Sang-Soo;Park, Chan;Jo, Wiliiam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.268-269
    • /
    • 2005
  • YBCO 박막형 초전도체(coated conductor) 제조를 위해서는 여러 층의 완충층이 필요하다. 현재 일반적인 완충층의 구조는 seed layer로써 $Y_2O_3$, diffusion barrier로 YSZ, capping layer로 $CeO_2$가 사용되고 있다. 특히, capping layer로 $CeO_2$는 YBCO와 lattice mismatch가 매우 우수한 산화물로 이용되고 있다 본 연구에서는 $CeO_2$ capping layer가 증착 방법에 따라 그 위에 증착되어지는 초전도층의 특성에 어떤 영향을 미치는지 연구하였다. $CeO_2$를 thermal evaporation과 PLD (pulsed laser deposition) 증착 방법으로 증착 한 후 그 위에 PLD 방법으로 YBCO를 증착하여 coated conductor의 성능을 평가하였다.

  • PDF

CHARACTERISTICS OF ORGANIC LIGHT-EMITTING DIODES FOR THE DEVICES WITH ELECTRON INJECTION LAYER (LIF AND $LI_2O$) (전자주입층(LiF와 $Li_2O$)을 사용한 유기 발광 소자의 특성)

  • Shin, Eun-Chul;An, Hui-Chul;Lee, Ho-Sik;Song, Min-Jong;Lee, Won-Jae;Han, Wone-Keun;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.439-440
    • /
    • 2007
  • To enhance the electron injection from the cathode of organic light-emitting diodes (OLEDs), We have studied characteristics of device that electron injection layer(EIL) is inserted between emissive layer and cathode. We fabricated bi-layer cathode $Li_2O$(x nm)/Al(100nm) and LiF(x nm)/Al(100nm) using LiF and $Li_2O$ as an electron injection layer. We analyzed the current efficiency, luminance efficiency, and external quantum efficiency of the device by varying the thickness of $Li_2O$ and LiF to be 0.5nm, 1nm, or 3nm. Using the EIL, we have obtained the efficiency of 7cd/A and the luminance of $20,000cd/m^2$. There is an improvement of efficiency by more than 3 times than the device without the $Li_2O$ layer.

  • PDF

Hardening Characteristics of Aluminum Alloy Surface by PTA Overlaying with Metal Powders (I) (플라즈마분체 오버레이법에 의한 알루미늄합금 표면의 경화특성에 관한 연구(I) -후막 표면 합금화층의 형성조건과 그 조직-)

  • ;中田一博;;;松田福久
    • Journal of Welding and Joining
    • /
    • v.12 no.4
    • /
    • pp.85-101
    • /
    • 1994
  • Effect of Cr, Cu and Ni metal powders addition on the alloyed layer of aluminum alloy (AC2B) has been investigated with the plasma transferred arc (PTA) overlaying process. The overlaying conditions were 125-200A in plasma arc current, 150mm/min in process speed and 5-20g/min in powder feeding rate. Main results obtained are summarized as follows: 1) It was made clear that formation of thick surface alloyed layer on aluminum alloy is possible by PTA overlaying process. 2) The range of optimum alloying conditions were much wider in case of Cu and Ni powder additions than the case of Cr powder addition judging from the surface appearance and the bead macrostructure. 3) Alloyed layer with Cu showed almost the homogeneous microstructure through the whole layer by eutectic reaction. alloyed layers with Cr and Ni showed needle-like and agglomerated microstructures, the structure of which has compound layer in upper zone of bead by peritectic and eutectic-peritectic reactions, respectively. 4) Microconstituents of the alloyed layer were analyzed as A1+CrA $l_{7}$ eutectics, C $r_{2}$al sub 11/, CrA $l_{4}$, C $r_{4}$A $l_{9}$ and C $r_{5}$A $l_{*}$ 8/ for Cr addition, Al+CuA $l_{2}$(.theta.) eutectics and .theta. for Cu addition, and Al+NiA $l_{3}$ eutectics. NiA $l_{3}$, N $i_{2}$A $l_{3}$ and NiAl for Ni addition. 5) Concerning defect of the alloyed layer, many blow holes were seen in Cr and Ni additions although there was lesser in Cu addition. Residual gas contents in blow hole for Cu and Ni alloyed layer were confirmed as mainly $H_{2}$ and a littie of $N_{2}$ Cracking was observed in compound zone of the alloyed layer in case of Cr and Ni addition but not in Cu alloyed layer.r.r.

  • PDF

Red-emitting α-SrO·3B2O3:Sm2+ Phosphor for WLED Lamps: Novel Lighting Properties with Two-layer Remote Phosphor Package

  • Tin, Phu Tran;Nguyen, Nhan K.H.;Tran, Minh Q.H.;Lee, Hsiao-Yi
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.389-395
    • /
    • 2017
  • This paper investigates a method to improve the lighting performance of white light-emitting diodes (WLEDs), which are packaged using two separate remote phosphor layers, a yellow-emitting YAG:Ce phosphor layer and a red-emitting ${\alpha}-SrO{\cdot}3B_2O_3:Sm^{2+}$ phosphor layer. The thicknesses of these two layers are $800{\mu}m$ and $200{\mu}m$, respectively. Both of them are examined in conditions where the average correlated color temperatures (CCT) are 7700 K and 8500 K. For this two-layer model, the concentration of red phosphor is varied from 2% to 30% in the upper layer, while in the lower layer the yellow phosphor concentration is kept at 15%. It was found interestingly that the lighting properties such as color rendering index (CRI) and luminous flux are enhanced significantly, while the color uniformity is maintained in a relatively close range to the one of one-layer configuration (measured at the same correlated color temperature). Besides, the transmitted and reflected light of each phosphor layer are revised by combining Kubelka-Munk and Mie-Lorenz theories. Through analysis, it is demonstrated that the packaging configuration of two-layer remote phosphor that employs red-emitting ${\alpha}-SrO{\cdot}3B_2O_3:Sm^{2+}$ phosphor particles provides a practical solution for general WLEDs lighting.

Water vapor permeation properties of $Al_2O_3/TiO_2$ passivation layer on a poly (ether sulfon) substrate

  • Gwon, Tae-Seok;Mun, Yeon-Geon;Kim, Ung-Seon;Mun, Dae-Yong;Kim, Gyeong-Taek;Han, Dong-Seok;Sin, Sae-Yeong;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.160-160
    • /
    • 2010
  • Organic electronic devices require a passivation layer to ensure sufficient lifetime. Specifically, flexible organic electronic devices need a barrier layer that transmits less than $10^{-6}\;g/m^2/day$ of water and $10^{-5}\;g/m^2/day$ of oxygen. To increase the lifetime of organic electronic device, therefore, it is indispensable to protect the organic materials from water and oxygen. Severe groups have reported on multi-layerd barriers consisting inorganic thin films deposited by plasma enhenced chemical deposition (PECVD) or sputtering. However, it is difficult to control the formation of granular-type morphology and microscopic pinholes in PECVD and sputtering. On the contrary, atomic layer deoposition (ALD) is free of pinhole, highly uniform, conformal films and show good step coverage. In this study, the passivation layer was deposited using single-process PEALD. The passivation layer, in our case, was a bilayer system consisting of $Al_2O_3$ films and a $TiO_2$ buffer layer on a poly (ether sulfon) (PES) substrate. Because the deposition temperature and plasma power have a significant effect on the properties of the passivation layer, the characteristics of the $Al_2O_3$ films were investigated in terms of density under different deposition temperatures and plasma powers. The effect of the $TiO_2$ buffer layer also was also addressed. In addition, the water vapor transmission rate (WVTR) and organic light-emitting diode (OLEDs) lifetime were measured after forming a bilayer composed of $Al_2O_3/TiO_2$ on a PES substrate.

  • PDF

Sputtered ZTO as a blocking layer at conducting glass and $TiO_2$ Interfaces in Dye-Sensitized Solar Cells (GZO/ZTO 투명전극을 이용한 DSSC의 광전 변환 효율 특성)

  • Park, Jaeho;Lee, Kyungju;Song, Sangwoo;Jo, Seulki;Moon, Byungmoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.53.2-53.2
    • /
    • 2011
  • Dye-sensitized solar cells(DSSCs) have been recognized as an alternative to the conventional p-n junction solar cells because of their simple fabrication process, low production cost, and transparency. A typical DSSC consists of a transparent conductive oxide (TCO) electrode, a dye-sensitized oxide semiconductor nanoparticle layer, liquid redox electrolyte, and a Pt-counter electrode. In dye-sensitized solar cells, charge recombination processes at interfaces between coducting glass, $TiO_2$, dye, and electrolyte play an important role in limiting the photon-to-electron conversion efficiency. A layer of ZTO thin film less than ~200nm in thickness, as a blocking layer, was deposited by DC magnetron sputtering method directly onto the anode electrode to be isolated from the electrolyte in dye-sensitized solar cells(DSCs). This is to prevent the electrons from back-transferring from the electrode to the electrolyte ($I^-/I_3^-$). The presented DSCs were fabricated with working electrode of Ga-doped ZnO glass coated with blocking ZTO layer, dye-attached nanoporous $TiO_2$ layer, gel electrolyte and counter electrode of Pt-deposited GZO glass. The effects of blocking layer were studied with respect to impedance and conversion efficiency of the cells.

  • PDF