• Title/Summary/Keyword: lauric oil

Search Result 24, Processing Time 0.021 seconds

Prospect and Situation of Quality Improvement in Oilseed rape (유채 품질 평가 현황과 전망)

  • 장영석
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47
    • /
    • pp.175-185
    • /
    • 2002
  • Rapeseed(Brassica napus L.) is an important oil crop as a vegetable oil, concentrated feed and industrial materials. The name "canola" was registered in 1979 by the Western Canadian Oilseed Crushers Association to describe "double-low" varieties. Double low indicates that the processed oil contains less than 2% erucic-acid and the meal less than 3mg/g of glucosinolates. Today annual worldwide production of rapeseed is approximately 35 million tons on 24 million hectares. China accounts for 33% of the world production and the European Economic Community for nearly 32%. Canola ranks 3rd in production among the world's oilseed crops following soybeans, sunflowers, peanuts and cottonseed. The recent advances in genomics and in gene function studies has allowed us to understand the detailed genetic basis of many complex traits, such as flowering time, height, and disease resistance. The manipulation of seed oil content via transgene insertion has been one of the earliest successful applications of modern biotechnology in agriculture. For example, the first transgenic crop with a modified seed composition to be approved for unrestricted commercial cultivation in the US was a lauric oil, rape-seed, grown in 1995. There were also some significant early successes, mostly notably the achievement of 40% to 60% lauric acid content in rapeseed oil, which normally accumulates little or no lauric acid. The name "$\textrm{Laurical}^{TM}$" was registered in 1995 by Calgene Inc. Nevertheless, attempts to achieve high levels of other novel fatty acids in seed oils have met with much less success and there have been several reports that the presence of novel fatty acids in transgenic plants can sometimes lead to the induction of catabolic pathways which break down the novel fatty acid, i.e. the plant recognizes the "strange" fatty acid and, far from tolerating it, may even actively eliminate it from the seed oil. It is likely that, in the future, transgenic oil crops and newly domesticated oil crops will both be developed in order to provide the increased amount and diversity of oils which will be required for both edible and industrial use. It is important that we recognize that both approaches have both positive and negative points. It will be a combination of these two strategies that is most likely to supply the increasing demands for plant oils in the 21st century and beyond.ant oils in the 21st century and beyond.

Studies on the Fatty Acid Composition of Egg Yolk Oil. (난황유의 지방산 조성에 관한 연구)

  • 고무석;김종숙;최옥자;김용두
    • Korean journal of food and cookery science
    • /
    • v.13 no.2
    • /
    • pp.87-91
    • /
    • 1997
  • Egg yolk oil was obtained by roasting and Pressing egg yolks of hen's egg breeding on the open bin system and the cage system, respectively. Lipids in egg yolk oil were extracted with a mixture of chloroform and methanol (2 : 1, V/V), and fractionated into neutral lipid, glycolipid, and phospholipid by silicic aicd column chromatography. Fatty acid composition of each fraction was determined by gas chromatography. The major fatty acids of total lipids and neutral lipids are in sequence of oleic acid, palmitic acid, and linoleic acid. The major fatty acids of the glycolipids are palmitic acid, oleic acid, stearic acid, and lauric acid successively. The major fatty acids of phospholipids are oleic acid, lauric acid, and Palmitic acid consecutively. About the fatty acids composition of egg yolk oil in the open barn system, the contents of saturated fatty acid are lower and the contents of unsaturated fatty acid are higher than that of the case system. The contents of unsaturated fatty acid in egg yolk oil is higher than that of saturated fatty acid in total lipids and nutral lipids. Unsaturated fatty acid/saturated fatty acid of e99 yolk oil in the open barn system is higher than that of the cage system in glycolipids and phospholipids.

  • PDF

Influence of Oleic and Lauric Acid on the Stability of Magnetorheological Fluids

  • Huang, Yuehua;Jiang, Yuhuan;Yang, Xiongbo;Xu, Ruizhen
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.317-321
    • /
    • 2015
  • In this paper, magnetorheological fluids (MRFs) based on micro-sized iron particles dispersed in silicone oil are presented. The iron particles are modified by adding different ratios of oleic acid and lauric acid as surfactants to the suspensions. Lauric acid was found to reduce the stability of the MRFs, and more lauric acid results in a higher rate of sedimentation. Further study showed that the formation and structure of lauric acid may result in the sedimentation of micrometer-sized particles. Meanwhile, the electro-resistance of MRF in this paper shows a decrease from beyond $6000M{\Omega}$ to $190{\Omega}$ with an increase in the external field from 0 mT to 400 mT.

Fatty Acid Compositions of Fats in Commercial Coffee Creamers and Instant Coffee Mixes and Their Sensory Characteristics (국내 유통되는 커피 크리머와 커피믹스에 함유된 지방의 지방산 조성 및 관능적 특성)

  • Lee, Bom-Ee;Lee, Hee-Jae;Cho, Eun-Ae;Hwang, Keum-Taek
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.3
    • /
    • pp.362-368
    • /
    • 2012
  • This study examined the fatty acid compositions of the fats extracted from 14 commercial coffee creamers and 11 instant coffee mixes, and evaluated the sensory characteristics of the coffees using different coffee creamers. The fat content in the 14 coffee creamers and 11 coffee mixes was 15~28% and 8~14%, respectively. The fats in 12 coffee creamers consisted of 34~45% lauric, 15~19% myristic and 10~18% palmitic acids. The fats in the other 2 coffee creamers consisted of 43% palmitic, 39% oleic and 10% linoleic acids. The fatty acids of the fats in the 11 coffee mixes were almost all saturated with lauric acid being the most abundant (44~45%). Coconut oil or palm kernel oil might have been used to manufacture the 12 coffee creamers and 11 coffee mixes, which had a higher lauric acid content. Palm oil (PO) might be a fat source for the other 2 coffee creamers. The sensory characteristics of five coffee mixes were evaluated based on their fatty acid compositions. The coffees with the creamers, which had a higher lauric acid content, were significantly more acceptable than those with a higher palmitic acid (p<0.05). The sensory evaluation of the coffees made with the creamers composed of hydrogenated coconut oil (HCO) and PO at different ratios showed that the acceptability increased with increasing HCO content. This suggests that PO may have a negative impact on the sensory characteristics.

Morphogenetic Behavior of Tropical Marine Yeast Yarrowia lipolytica in Response to Hydrophobic Substrates

  • Zinjarde, Smita S.;Kale, Bhagyashree V.;Vishwasrao, Paresh V.;Kumar, Ameeta R.
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.9
    • /
    • pp.1522-1528
    • /
    • 2008
  • The morphogenetic behavior of a tropical marine Yarrowia lipolytica strain on hydrophobic substrates was studied. Media containing coconut oil or palm kernel oil (rich in lauric and myristic acids) prepared in distilled water or seawater at a neutral pH supported 95% of the cells to undergo a transition from the yeast form to the mycelium form. With potassium laurate, 51 % of the cells were in the mycelium form, whereas with myristate, 32% were in the mycelium form. However, combinations of these two fatty acids in proportions that are present in coconut oil or palm kernel oil enhanced the mycelium formation to 65%. The culture also produced extracellular lipases during the morphogenetic change. The yeast cells were found to attach to the large droplets of the hydrophobic substrates during the transition, while the mycelia were associated with the aqueous phase. The alkane-grown yeast partitioned more efficiently in the hydrophobic phases when compared with the coconut oil-grown mycelia. A fatty acid analysis of the mycelial form revealed the presence of lauric acid in addition to the long-chain saturated and unsaturated fatty acids observed in the yeast form. The mycelia underwent a rapid transition to the yeast form with n-dodecane, a medium-chain aliphatic hydrocarbon. Thus, the fungus displayed a differential behavior towards the two types of saturated hydrophobic substrates.

Effects of Dietary Lipid Sources on Growth and Body Composition of Snail (Semisulcospira gottschei)

  • Lee Sang-Min;Kim Kyoung-Duck;Lim Tae-Jun;Bang In Chul
    • Fisheries and Aquatic Sciences
    • /
    • v.5 no.3
    • /
    • pp.165-171
    • /
    • 2002
  • This study was conducted to investigate the effects of dietary lipid sources on survival, growth anc body composition of snail (Semisu1cospira gottschei). Three replicate groups of snail (average weighing 152mg) were fed the diets containing different lipid sources such as lauric acid (LA), squid liver oil (SO), linseed oil (LO), corn oil (CO), SO+ LO, SO+CO, LO+CO and SO+LO+CO for 8 weeks. Survival was not affected by dietary lipid sources (p>0.05). Weight gain of snail fed the SO, SO+LO and SO+LO+CO diets was significantly higher than that of snail fed the LA and LO diets (P<0.05), and the lowest weight gain was observed in snail fed the LA diet (P<0.05). No significant difference was found in crude lipid content of edible portion in snail fed the different diets (P>0.005). Contents of 12:0, 18:2n­6, 18:3n-3 and 20:5n-3 from snail fed the LA, CO, LO and SO diets were higher than those from snail fed the other diets, respectively (p<0.05). The highest 22:6n-3 content was observed in snail fed the SO+ LO but was not significantly different from that of snail fed the SO, SO+CO and SO+LO+CO diets (p>0.05). The n-6 highly unsaturated fatty acids such as 20:4n-6 and 22:4n-6 contents of snail were not affected by dietary lipid sources (p>0.05). These results suggested that squid liver oil and mixture of squid liver oil and linseed and/or corn oil are good dietary lipid sources for the normal growth of snail. However lauric acid may not be a good lipid source for snail diet.

Dispersion Technique of Alumina Nanoparticles in Transformer Oil (알루미나 나노분말을 함유한 변압기 절연유의 분산기술)

  • Song Hyunwoo;Choi Cheol;Choi Kyungshik;Oh Jemyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.233-239
    • /
    • 2006
  • Two different nanofluids were prepared by dispersing $Al_{2}O_3$ nanoparticles in transformer oil after hydrophobic surface modification. The agglomerated alumina nanoparticles with diameters from ${\mu}m$ to mm were ball-milled and then treated with surfactants such as lauric acid, stearic acid and oleic acid. The surface characteristics of modified nanoparticles were examined by FTIR spectroscopy. It showed that the hydrophobicity of nanoparticles was caused by esterification between hydroxyl groups on the particle surface and functional groups of surfactant. The shape and size distribution of ball-milled particles were analyzed by TEM and PSA. The results compared with the primary particles indicated that the size distributions of nanoparticles were dependant on milling times. The dispersion stability of modified nanoparticles dispersed in oil was highly dependent on the composition and amounts of surfactants.

Comparative studies on the fatty acids in the green and roasted coffee beans (커피의 원두와 배전두의 지방산조성에 관한 비교연구)

  • 고영수
    • Journal of the Korean Home Economics Association
    • /
    • v.24 no.3
    • /
    • pp.119-127
    • /
    • 1986
  • To investigate differences in fatty acid composition in green coffee beans and roasted coffee beans, the extracts of two beans were subjected to analysis of fatty acid composition by GC and HPLC. The results showed that palmitic and liolneic acid were the main fatty acids of coffee oil and their contents were about 40%. Minor components, such as capric acid, lauric acid and myristic acid were detected in both samples by GC, but nut HPLC.

  • PDF

Contents and Fatty Acid Compositions in Fats Extracted from Ice Creams and Ice Cream-Related Products (아이스크림 제품류에 함유되어 있는 지방함량 및 지방산조성)

  • Shin, Min-Kyung;Oh, Hyun-Hee;Hwang, Keum-Taek
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.6
    • /
    • pp.721-728
    • /
    • 2006
  • The objective of the study was to analyze the contents and fatty acid compositions in the extracted fats from selected commercial ice creams and ice cream-related products. Seventy four ice creams and ice cream-related products were collected from local stores: 22 regular 'ice creams', 10 premium 'ice creams', 22 'ice milks', 4 'sherbets', 11 'non-milk-fat ice creams' and 5 'non-milk product ice creams'. Contents and fatty acid compositions of the fats in the ice creams and ice cream-related products were analyzed. Fat contents in regular 'ice creams', premium 'ice creams' and 'ice milks' were $5{\sim}11%,\;13{\sim}17%\;and\;2{\sim}10%$, respectively. 'Sherbets', 'non-milk-fat ice creams' and 'non-milk product ice creams' contained $2{\sim}7%,\;4{\sim}11%\;and\;1{\sim}2%$ fats, respectively. Fats extracted from 14 regular 'ice creams', all of the premium 'ice creams' and 11 'ice milks' contained $63{\sim}75%$ saturated fatty acids and $2{\sim}5%$ trans fatty acids. Their fatty acid compositions were similar to those in milks and butter. However, fats from 8 regular 'ice creams' and 11 'ice milks' contained $11{\sim}28%\;and\;11{\sim}34%$ lauric acid, respectively. Since these levels of lauric acid were 3 times more than in milk or butter, other fats along with milk fat might be used for manufacturing these' ice creams' and 'ice milks'. Out of these 19 products, only 5 products were labelled as 'coconut oil' or 'refined oil' as well as milk fat being used. Fats extracted from 'sherbets', 'non-milk-fat ice creams' and 'non-milk product ice creams' contained $81{\sim}92%,\;76{\sim}99%\;and\;84{\sim}99%$ saturated fatty acids, respectively. Lauric acid was the most abundant fatty acid in the fats of these products, being $33{\sim}34%,\;17{\sim}45%\;and\;27{\sim}46%$ of the total fatty acids, respectively.

Analyses of Lipid and Volatile Components in Juniper Seed(Juniperus rigida Sieb. et Zucc.) (노간주나무(Juniperus rigida Sieb. et Zucc.) 열매의 지질 및 향기성분 분석)

  • 신원선;하재호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.6
    • /
    • pp.795-800
    • /
    • 2003
  • Juniper seed oil extracted by steam distillation has been a useful material as a medicine, insect repellant, and flavorant for alcoholic beverages. As the result of juniper seed oil analysis, the acid value, saponification value, unsaponification value phosphorus contents, and refractive index were 91.04, 85.15, 15.52, 11.04 ppm, 1.47, respectively The content of neutral lipids, glycolipids and phospholipids were 85.4%, 12.2% and 2.4%, respectively. From the fatty acids analysis, the major fatty acids from the juniperseed harvested in August were lauric acid (31.9% ), palmitic acid (28.0% ), stearic acid (9.9%), and oleic acid (8.5%) . However, maturated seed oil harvested in October mainly consists of linoleic acid (47.6%), linolenic acid (17.6%), oleic acid (16.1%), and palmitic acid (11.9%). Upon these analyses, fatty acids composition of juniper seed oil depends on the seed maturation. According to volatile compounds analyses of essential oil extracted using steam distillation method and SPME, the major compounds were $\beta$-myrcene, $\alpha$-pinene, $\beta$-farnescene, $\beta$-cubebene, limonene, trans-caryo-phyllene, $\alpha$-terpinolene, camphene, sabinene, and $\beta$-pinene.