• Title/Summary/Keyword: launch vehicle

Search Result 792, Processing Time 0.022 seconds

Modal Test of the 2nd Stage of Small Launch Vehicle (소형 위성 발사체 2단부 모드 시험)

  • Seo, Sang-Hyun;Jeong, Ho-Kyeong;Youn, Se-Hyun;Park, Soon-Hong;Jang, Young-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.258-261
    • /
    • 2006
  • The structure of small launch vehicle can be divided into engine section and payload section. This paper introduces modal test of the payload section of small launch vehicle which is composed to satellite, PLA (Payload Adapter), VEB (Vehicle Equipment Bay), KMS (Kick Motor Support) and KM (Kick Motor). From this test, dynamic properties of the 2nd stage structure of small launch vehicle can be obtained. In this test, to simulate free-free boundary condition, test object was hung by 4 bungee cords and excited by using impact hammer Modal test data are analyzed by using TDAS(Test Data Analysis Software). As the result, modal parameters and mode shapes below 100Hz of the 2nd stage of small launch vehicle were identified.

  • PDF

Trend Analysis based Strategy Evaluation for Launch Vehicle Industry in Korea (한국의 우주발사체 산업 발전을 위한 우주발사서비스 시장진입 전략 평가)

  • Hong, Seulki;Ahn, Jaemyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.10
    • /
    • pp.936-942
    • /
    • 2015
  • This paper suggests the significant strategies and their priority to deal with space transportation market trends. First, market trends related with technical improvement and change in demand are analyzed by the literature research. The three key trends are obtained: 'Increasing Demand of High-Performance Launch Vehicles', 'Rising of Low-Price Launch Vehicles', and 'Rising of Dual/Multi-Launch'. And then, strategies for developing the launch vehicle industry in Korea are selected from several studies about commercialization of Korean launch vehicle. The strategies are evaluated by the experts through pairwise comparison matrix and the criteria for this process is how significantly does the strategy effect on the launch vehicle industry through market assessment. As a result, reliable order of priority among the strategies are obtained. Under the three key trends, strategy to enhance reliability is most important. And, strategy to have price competitiveness has secondary priority to deal with 'Rising of Low-Price Launch Vehicles' trend and 'Rising of Dual/Multi-Launch' trend. On the contrary, strategy of government's support is secondary under 'Increasing Demand of High-Performance Launch Vehicles' trend.

Thruster Fault Detection of the Launch Vehicle Upper Stage Attitude Control System (발사체 상단 자세제어 시스템의 추력기 고장 검출)

  • Lee, Soo-Jin;Kwon, Hyuk-Hoon;Hwang, Tae-Won;Tahk, Min-Jea
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.72-79
    • /
    • 2004
  • A method for thruster fault diagnosis for launch vehicle upper stage was developed. In order to protect the launch vehicle against the occurrence of faults, it is necessary to detect and identify the fault, as well as to reconfigure the controller of the vehicle. Considering the upper stage launch vehicle using reaction control system, an analytical method was adopted in order to detect the fault occurred in thruster. The fault detection scheme can be applied to the system regardless of the form of thruster fault occurred - leakage or lock-out. Results from processor-in-the-loop simulation are provided to demonstrate the validity of this fault detection and isolation scheme for the upper stage launch vehicle.

A CONCEPTUAL DESIGN FOR ELECTRICAL GROUNDING ARCHITECTURE OF KOREAN SPACE LAUNCH VEHICLE

  • Kim Kwang-Soo;Lee Soo-Jin;Ma Keun-Soo;Shin Myoung-Ho;Hwang Seung-Hyun;Ji Ki-Man;Chung Eui-Seung
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.231-234
    • /
    • 2004
  • Electrical grounding is defined as referencing an electrical circuit or a common reference plane for preventing shock hazards and for enhancing operability of the circuit and EMI control. In order to realize the best electrical grounding system of korean space launch vehicle, we should design the electrical grounding architecture of korean space launch vehicle of system-level at the earliest point in design procedure. To minimize the electrical grounding loop and the unnecessary electromagnetic interference or radiation among the electronic subsystems, we should establish the electrical grounding rules of the all electrical interfaces. The electrical interfaces among the electronic subsystems are generally classified into the electrical power and signal interfaces. Because of using the primary and secondary power system architecture in the korean space launch vehicle system such as the common space launch vehicle systems, we need to establish the electrical grounding rules between the primary and secondary power system. We also need to establish the electrical signal grounding interface rules among the electronic subsystems. In this paper, we will describe the grounding schemes of the common space launch vehicle system and propose a conceptual design for the electrical grounding architecture of korean space launch vehicle system.

  • PDF

A Study on Operational Concepts on Final Assembly-Transportation-Erection Methodology of Launch Vehicles (발사체 총조립-이송-기립 운용개념 변화에 대한 연구)

  • Daerae Kim;Chankyoung Lim;Seongpil Yang;Yeongho Lee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.5
    • /
    • pp.52-62
    • /
    • 2022
  • A launch vehicle is a one of the biggest hardware among the products of human technology. For huge size launch vehicles, to transport to Launch Complex and to erect on launch pad precisely and safely is very critical issue. Therefore, a final assembly, transportation, erection and holding in vertical position in launch pad requires very precise operational technology, processes and related aggregates. Those operational concept has been developed to comply with the requirement of each launch vehicle and technology level at that time. In this paper, a progress of operational methodology in global launch vehicles are described. In addition, methodologies used on the KSLV-1 Naro and the KSLV-II Nuri launch vehicle are introduced.

Evalution of reliability for propulsion system of launch vehicle (우주발사체 추진기관의 신뢰도 평가)

  • Jo, Sang-Yeon;Kim, Yong-Uk;O, Seung-Hyeop;Park, Chan-Bin
    • 시스템엔지니어링워크숍
    • /
    • s.4
    • /
    • pp.155-158
    • /
    • 2004
  • In executing the large scale national project, such as development of space launch vehicle, it is most important to guarantee the technological reliability. However the reliability analysis of launch vehicle is different from other mass product goods because of the limitation of budget and number of tests. In this study, the reliability analysis technique of the propulsion system, which is one of the major sub-systems of launch vehicle is illustrated applied to the liquid rocket engine of KSR-Ⅲ.Ȁ

  • PDF

Analysis of payload compartment venting of satellite launch vehicle

  • Mehta, R.C.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.4
    • /
    • pp.437-448
    • /
    • 2017
  • The problem of flow through the vent is formulated as an unsteady, nonlinear, ordinary differential equation and solved using Runge-Kutta method to obtain pressure inside payload faring. An inverse problem for prediction of the discharge coefficient is presented employing measured internal pressure of the payload fairing during the ascent phase of a satellite launch vehicle. A controlled random search method is used to estimate the discharge coefficient from the measured transient pressure history during the ascent period of the launch vehicle. The algorithm predicts the discharge coefficient stepwise with function of Mach number. The estimated values of the discharge coefficients are in good agreement with differential pressure measured during the flight of typical satellite launch vehicle.

KSLV-II Cost Estimate using TRANS COST 7.1 (TRANSCOST 7.1을 적용한 실용위성 발사체 비용추정)

  • Seo, Yun-Kyoung;Oh, Bum-Seok
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.119-125
    • /
    • 2007
  • Space launch vehicle development needs many kinds of technologies synthetically. Nowadays, KARI (Korea Aerospace Research Institute) has developed a space launch vehicle, KSLV-I (Korea Space Launch Vehicle-I), that is able to load with an 100kg payload. After that it plans to develop Korean Space Launch Vehicle. As space launch vehicle becomes more complicate and larger, it needs a scientific and analytic development cost estimation. In this paper a cost estimation for KSLV-II using TRANSCOST 7.1 was studied.

  • PDF

Evaluation of reliability for propulsion system of launch vehicle (우주발사체 추진기관의 신뢰도 평가)

  • Cho, S.Y.;Kim, Y.W.;Oh, S.H.;Park, C.B.
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.61-66
    • /
    • 2005
  • In executing the large scale national project, such as development of space launch vehicle, it is most important to guarantee the technological reliability. However the reliability analysis of launch vehicle is different from other mass product goods because of the limitation of budget and number of tests. In this study, the reliability analysis technique of the propulsion system, which is one of the major sub-systems of launch vehicle is illustrated and applied to the liquid rocket engine of KSR-III.

  • PDF

RELIABILITY DEMONSTRATION OF PROPULSION SYSTEM OF SPACE LAUNCH VEHICLE

  • Cho Sang-Yeon;Kim Yong-Wook;Oh Seung Hyub;Park Chan-Bin
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.341-343
    • /
    • 2004
  • In executing the large scale national project, such as development of space launch vehicle, it is most important to guarantee the technological reliability. However the reliability analysis of launch vehicle is different from other mass product goods because of the limitation of budget and number of tests. In this study, the reliability analysis technique of the propulsion system, which is one of the major sub-systems of launch vehicle is illustrated and applied to the liquid rocket engine of KSR-III.

  • PDF