• Title/Summary/Keyword: lattice plate

Search Result 67, Processing Time 0.027 seconds

Performance Evaluation of a New Buried Expansion Joint (새로운 매설형 신축이음장치의 성능 평가)

  • Hong, Seong-Hyeop;Park, Sang-Yeol;Jwa, Yong-Hyun
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.27-35
    • /
    • 2010
  • Asphalt Plug Joint(APJ) is an buried expansion joint that enabling the smooth connection of expansion gap and road pavement by filling the gap with bituminous mixture of 20% bitumen and 80% aggregate by weight, so it secures evenness and expansion or contraction using the material's properties. Although APJ is designed to have a 6-7 year lifecycle, there are some cases where it is damaged within the first six months. This early damage cause traffic congestion due to frequent repair works, and social cost exceeding the installation cost of the joint. So, in this research, we have developed a new system of Buried Folding Lattice Joint(BFLJ) which can overcome the disadvantages of APJ, and have analyzed and compared it's performance with the conventional APJ through experiment with specimens. As a result of the experiment, APJ had crack formation on both ends of the gap plate, spreading to the surface of the expansion joint. With this result, we can conclude that the reason for early damage is the tension failure due to the concentration of strain in the asphalt mixture along the end of gap plate and the debonding along the joint section. In contrast, the newly developed BFLJ induced even transformation in the joint by applying moving stud and high performance material, and resolved APJ's disadvantage of strain concentration. Therefore, it could be seen that the newly developed BFLJ could overcome the disadvantages of APJ and prevent early damage.

Aerodynamic Analysis of a Rectangular Wing in Flapping and Twisting Motion using Unsteady VLM (직사각형 평판 날개의 날개짓과 비틀림 운동에 대한 비정상 VLM 공력 해석)

  • Kim, U-Jin;Kim, Hak-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.14-21
    • /
    • 2006
  • The unsteady vortex lattice method is used to model twisting and flapping motions of a rectangular flat plate wing. The results for plunging and pitching motions were compared with the limited experimental results available and other numerical methods. They show that the method is capable of simulating many of the features of complex flapping flight. The lift, thrust and propulsive efficiency of a rectangular flat plate wing have been calculated for various twisting angles and reduced frequency with an amplitude of flapping angle($20^{\circ}$). And the effects of the twisting on the aerodynamic characteristics of the flapping wing are discussed by examination of their trends.

Rietveld Analysis of Nano-crystalline MnFe2O4 with Electron Powder Diffraction

  • Kim, Jin-Gyu;Seo, Jung-Wook;Cheon, Jin-Woo;Kim, Youn-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.183-187
    • /
    • 2009
  • The structure of nano-crystalline $MnFe_2O_4$ was determined and refined with electron powder diffraction data employing the Rietveld refinement technique. A nano-crystalline sample (with average crystal size of about 10.9 nm) was characterized by selected area electron diffraction in an energy-filtering transmission electron microscope operated at 120 kV. All reflection intensities were extracted from a digitized image plate using the program ELD and then used in the course of structure refinements employing the program FULLPROF for the Rietveld analysis. The final structure was refined in space group Fd-3m (# 227) with lattice parameters a=8.3413(7) $\AA$. The reliability factors of the refinement are $R_F$=7.98% and $R_B$=3.55%. Comparison of crystallographic data between electron powder diffraction data and reference data resulted in better agreement with ICSD-56121 rather than with ICSD-28517 which assumes an initial structure model.

Study on the Thrust Generation of Flapping Flat Plates for Microscale Biomedical Swimming Robots (초소형 의공학용 유영로봇을 위한 플래핑 평판들의 추력 발생 연구)

  • An, Sang-Joon;Kim, Young-Dae;Maeng, Joo-Sung;Han, Cheol-Heui
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.415-420
    • /
    • 2007
  • Creatures in nature flap their wings to generate fluid dynamic forces that are required for the locomotion. Small-size creatures do not use flapping wings. Thus, it is questionable at which Reynolds number the propulsion using the flapping wings are effective. In this paper, the onset conditions of the thrust generation from the combined motion of flat plates (heaving, pitching in the motion and also tandem, biplane in the array) is investigated using a Lattice Boltzmann method. To solve the pitching motion of the plate on the regularly spaced lattices, 2-D moving boundary condition was implemented. The present method is validated by comparing the wake patterns behind a oscillating circular cylinder and its hydrodynamic characteristics with the CFD results. Present method can be applied to the design of micro flapping propulsors for biomedical use.

  • PDF

Residual Stress Measurement on Welded Specimen by Neutron Diffraction (중성자 회절을 이용한 용접부위의 잔류응력 측정)

  • 박만진;장동영;최희동
    • Journal of Welding and Joining
    • /
    • v.20 no.2
    • /
    • pp.50-58
    • /
    • 2002
  • Residual stress is generated in the structures as a result of irregular elastic-plastic deformation during fabrication processes such as welding, heat treatment, and mechanical processing. There are several factors attributed to the origin of residual stresses, tensile or compressive. The stresses can be determined by destructive ways or nondestructive ways using X-ray or neutron diffraction. Although X-ray diffraction is a well established technique, it is practically limited to near-surface stresses. Neutrons penetrate easily into most materials and neutron diffraction permits non-destructive evaluation of lattice strain within the bulk of large specimens because the radiation is more deeply penetrating for metallic engineering components. This paper presented application of neutron diffraction technique to the residual stress measurement using 20 mm thick welded stainless steel plate($100{\times}100 \textrm{mm}^2$)

Synthesis of Superconducting $SrPd_2Ge_2$ Single Crystals ($SrPd_2Ge_2$ 초전도 단결정 합성)

  • Sung, Nak-Heon;Kang, B.Y.;Cho, B.K.
    • Progress in Superconductivity
    • /
    • v.11 no.2
    • /
    • pp.92-95
    • /
    • 2010
  • $SrPd_2Ge_2$ single crystals were grown by self-flux method. Several shiny plate-like single crystals were obtained. The crystal structure and lattice parameters were characterized using the x-ray diffractometor, which indicates the crystals are in a single phase of $ThCr_2Si_2$-type. We confirmed superconducting transition temperature at 2.7 K by measuring magnetization and electrical resistivity.

Structural Characteristisrics and Adhesion of Chemicaly Vapor Deposited TiN Films on Stainless Steels (화학증착된 TiN 박막의 구조적 특성 및 결합력에 관한 연구)

  • 이민섭;이성래;백영현
    • Journal of the Korean institute of surface engineering
    • /
    • v.22 no.1
    • /
    • pp.17-25
    • /
    • 1989
  • The structural Charactesties and adhesion of chemically vapor deposited TiN film on stain less steels have been investated as functions of deposition temperature, surface roughness of sub state, and types of substrates. The grain zine and the lattice parameter of TiN film decreased with decreasing roughness of substates. The(200) preferred orientation was developed dominatly and the lattlice parameter decreased as temperature intereased reardless of the surdless roughnessand type of the substrates used. The surface morphology of TiN film changed from bushed crystal to a plate and then to pyamidal dense crystals with an increase in the deposition temperature. The adhesion of TiN films increased with coating thinkness and decreased with surface roughness in general. The calculations using a Bejamin & Weaver's model have been compard. Maximum valuse of adhesion energy calculated using Laguier's model were W304=331Jm-2,w410=113Jm-2,andW430=107jm-2

  • PDF

The Relation between Hydrogen absorption and Expansion behavior in the Rolled Plate (압연가공판재의 수소저장과 팽창거동과의 관계)

  • Jung, Young-Guan;Kim, Kyoung-Hoon;Lee, Keun-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.2
    • /
    • pp.121-128
    • /
    • 2001
  • In order to study the relation between expansion of the specimen and the hydrogen absorption rate, thin palladium plates with cold rolling were used. Thin palladium plates were hydrogenated in the 0.1mol $H_2SO_4$ electrolyte by electrochemical method. The expansion behavior on hydrogen absorbing can be obtained by X-ray diffraction analysis and by micrometer measurement It is noted that the expansion rate of Palladium specimens in thickness direction is larger than in length and width direction. The lattice constants increase quickly with increasing hydrogen absorbing rate up to 0.5, but above the rate they keep constant. Also the clues for plastic deformation, such as slip lines and voids, were observed in abundantly even though the plates were hydrogenated once.

  • PDF

The Effect of Sintering Time on the Stabilization of the Bi-Pb-Sr-Ca-Cu-O Superconducting Phase (Bi-Pb-Sr-Ca-Cu-O 초전도상의 안정화에 미치는 소결시간의 영향)

  • 형경우;박성호;이두원;한태종;최범식;김창은
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.2
    • /
    • pp.95-100
    • /
    • 1992
  • A high-Tc superconducting phase was obtained using long sintering time of 210 hours. From XRD and SEM analyses, it could be confirmed that the particles were plate phase, of which the structure is tetragonal system with lattice parameter a=b=5.44${\AA}$, C=37.18${\AA}$. Resistance and current density measurements were carried out using 4 probe method. The experimental data revealed that the stable high-Tc superconducting phase was easily formed by addition of Pb to Bi-system. Therefore, we could find the sintering condition to synthesis the system having the largest fraction of high Tc phase.

  • PDF

Structural Analysis of Zn-Ni electrodeposition (Zn-Ni 도금강판의 도금층 구조 분석)

  • Lee, D.H.;Park, S.H.
    • Analytical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.40-46
    • /
    • 1999
  • Zn-Ni alloy electrodeposition on steel has been examined by means of X-ray diffraction and scanning electron microscopy. The effect of current density, $Ni^{2+}$ ion concentration, and $Cl^-$ ion concentration on the structure as well as morphology of the electrodeposit have been studied. The Ni content of the electrodeposit increased with decreasing current density in the range studied in this work. The Ni content of the electrodeposit also increased with increasing $Ni^{2+}$ ion and $Cl^-$ ion concentrations. The structure change of the electrodeposit was closely related to the Ni content. In fact, the mixture phase of ${\eta}$ and ${\gamma}$ was found below 10 wt.% of Ni while the ${\gamma}$ phase only was observed above 10 wt.% of Ni. In addition, the lattice parameter, a, of then phase structure increased and the lattice parameter, c, of it decreased as the Ni content of the electrodeposit increased. The morphology of the electrodeposit varied from the plate-like shape to the fine granular shape depending upon the change in composition and structure of the electrodeposit.

  • PDF