• Title/Summary/Keyword: lattice codes

Search Result 32, Processing Time 0.021 seconds

Development and verification of pin-by-pin homogenized simplified transport solver Tortin for PWR core analysis

  • Mala, Petra;Pautz, Andreas
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2431-2441
    • /
    • 2020
  • Currently, the pin-by-pin homogenized solvers are a very active research field as they can, unlike the nodal codes, directly predict the local power, while requiring significantly less computational resources than the heterogeneous transport codes. This paper presents a recently developed pin-by-pin diffusion/SP3 solver Tortin, its spatial discretization method and the reflector treatment. Regarding the spatial discretization, it was observed that the finite difference method applied on pin-cell size mesh does not properly capture the big flux change between MOX and uranium fuel, while the nodal expansion method is more accurate but too slow. If the finite difference method is used with a finer mesh in the outer two pin rows of the fuel assembly, it increases the required computation time by only 50%, but decreases the pin power errors below 1% with respect to lattice code reference solutions. The paper further describes the coupling of Tortin with a microscopic depletion solver. Several verification tests show that the SP3 pin-by-pin solver can reproduce the heterogeneous transport solvers results with very good accuracy, even for fuel cycle depletion of very heterogeneous core employing MOX fuel or inserted control rods, while being two orders of magnitude faster.

Investigating Heavy Water Zero Power Reactors with a New Core Configuration Based on Experiment and Calculation Results

  • Nasrazadani, Zahra;Salimi, Raana;Askari, Afrooz;Khorsandi, Jamshid;Mirvakili, Mohammad;Mashayekh, Mohammad
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.1-5
    • /
    • 2017
  • The heavy water zero power reactor (HWZPR), which is a critical assembly with a maximum power of 100 W, can be used in different lattice pitches. The last change of core configuration was from a lattice pitch of 18-20 cm. Based on regulations, prior to the first operation of the reactor, a new core was simulated with MCNP (Monte Carlo N-Particle)-4C and WIMS (Winfrith Improved Multigroup Scheme)-CITATON codes. To investigate the criticality of this core, the effective multiplication factor ($K_{eff}$) versus heavy water level, and the critical water level were calculated. Then, for safety considerations, the reactivity worth of $D_2O$, the reactivity worth of safety and control rods, and temperature reactivity coefficients for the fuel and the moderator, were calculated. The results show that the relevant criteria in the safety analysis report were satisfied in the new core. Therefore, with the permission of the reactor safety committee, the first criticality operation was conducted, and important physical parameters were measured experimentally. The results were compared with the corresponding values in the original core.

Bit Split Algorithm for Applying the Multilevel Modulation of Iterative codes (반복부호의 멀티레벨 변조방식 적용을 위한 비트분리 알고리즘)

  • Park, Tae-Doo;Kim, Min-Hyuk;Kim, Nam-Soo;Jung, Ji-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.9
    • /
    • pp.1654-1665
    • /
    • 2008
  • This paper presents bit splitting methods to apply multilevel modulation to iterative codes such as turbo code, low density parity check code and turbo product code. Log-likelihood ratio method splits multilevel symbols to soft decision symbols using the received in-phase and quadrature component based on Gaussian approximation. However it is too complicate to calculate and to implement hardware due to exponential and logarithm calculation. Therefore this paper presents Euclidean, MAX, sector and center focusing method to reduce the high complexity of LLR method. Also, this paper proposes optimal soft symbol split method for three kind of iterative codes. Futhermore, 16-APSK modulator method with double ring structure for applying DVB-S2 system and 16-QAM modulator method with lattice structure for T-DMB system are also analyzed.

Implementation of Visible monkey into general-purpose Monte Carlo codes: MCNP, PHITS, and Geant4

  • Soo Min Lee;Chansoo Choi;Bangho Shin;Yumi Lee;Ji Won Choi;Bo-Wi Cheon;Chul Hee Min;Beom Sun Chung;Hyun Joon Choi ;Yeon Soo Yeom
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4019-4025
    • /
    • 2023
  • Recently, a new monkey computational phantom, called Visible Monkey, was developed for non-ionizing radiation studies in animal research. In this study, we extended its applications to ionizing radiation studies by implementing the voxel model of the Visible Monkey into three general-purpose Monte Carlo (MC) codes: MCNP6, PHITS, and Geant4. The implementation work for MCNP and PHITS was conducted using the LATTICE, UNIVERSE, and FILL cards. The G4VNestedParameterisation class was used for Geant4. Then, organ dose coefficients (DCs) for idealized photon beams in the antero-posterior direction were calculated using the three codes and compared, showing excellent agreement (differences <3%). Additionally, organ DCs in other directions (postero-anterior, left-lateral, and right-lateral) were calculated and compared with those of the newborn and 1-year-old reference phantoms. Significant differences were observed (e.g., the stomach DC of the monkey was 5-fold greater than that of the 1-year-old phantom at 0.03 MeV) while the differences tended to decrease with increasing energy (mostly <20% at 10 MeV). The results of this study allows conducting MC simulations using the Visible Monkey to estimate organ-level doses, which should be valuable to support/improve monkey experiments involving ionizing radiation exposures.

Nuclear Design Analysis of Wolsung-1 CANDU-PHW Nuclear Generating Station

  • Chung, Chang-Hyun;Oh, Keun-Bae;Kim, C.H.
    • Nuclear Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.203-213
    • /
    • 1978
  • A combination of computer codes such as LATREP, HWR, AXAV and CITATION is utilized in an attempt to analyze the nuclear design characteristics of the CANDU-PHWR of the Wolsung Unit 1. The major nuclear properties to be computed are tile lattice properties of CANDU fuel channel and the core channel power distribution. The computed results are compared with the PSR documentation for the Wolsung reactor. The observed discrepancies between our computation and the PSB values are discussed in terms of incomplete information on the description of the core configuration in the PSR and the different calculation methods.

  • PDF

Source Codes Plagiarism Detection By Using Reserved Word Sequence Matching (예약어 시퀀스 탐색을 통한 소스코드 표절검사)

  • Lee Yeong-Ju;Kim Seung;Gang Seok-Ho
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1198-1206
    • /
    • 2006
  • 프로그램 소스코드 표절 검사에 대한 기존 방법은 크게 지문(finger-print)법과 구조기반 검사법으로 나뉘며, 주로 단어의 유사성이나 발생빈도를 사용하거나 소스코드 구조상의 특징으로 두 소스간의 유사성을 비교한다. 본 연구에서는 프로그래밍 언어의 예약어 시퀀스를 사용하여 소스코드들 간의 유사성을 비교하고, 이 결과를 FCA(Formal Concept Analysis)를 통해 해석하고 시각화 하는 방법을 제시한다. 일반적인 VSM(Vector Space Model)과 같은 단일 단어 분석으로는 단어의 인접성을 구분할 수 없으므로 단어의 시퀀스 분석이 가능하도록 알고리즘을 구성하였으며 이러한 방식은 지문법의 단점인 소스코드의 부분적인 표절 탐지의 난점을 해결할 수 있고 함수의 호출 순서나 수행 순서에 상관없이 표절을 탐지할 수 있는 장점을 가진다. 마지막으로 유사도 측정결과는 FCA를 이용하여 격자(lattice)로 시각화됨으로써 이용자의 이해도를 높일 수 있다.

  • PDF

The capture of small variations in interior noise levels using PowerFLOW

  • Cyr, Stephane;Choi, Eui-Sung;Moron, Philippe;Senthooran, Siva
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.565-568
    • /
    • 2014
  • Hyundai Motor Company is proposing the fourth evolution of their Hyundai Simplified Model as benchmark results for the validation of CFD codes in aeroacoustics and noise transmission to the interior of a cabin. The focus of this benchmark is on variations in noise level induced by small typical geometry changes that can be found in a car development program. This article presents the noise transmission results obtained with PowerFLOW in combination with a SEA model and shows that it is possible to capture small variations in noise level with a lattice Boltzmann method based code.

  • PDF

Articulated Rotor/Aerodynamics Co-Simulation Using FMI Standard (FMI 표준을 활용한 관절형 로터/공력 연계시뮬레이션)

  • Paek, Seung-Kil;Park, Joongyong
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.4
    • /
    • pp.1-7
    • /
    • 2015
  • The purpose of this research is to develop co-simulation methodology of codes developed in different modeling and simulation environment. We develop aerodynamic FMU(Functional Mock-up Unit) meeting FMI(Functional Mock-up Interface) specification version2 utilizing Legacy FORTRAN aerodynamic code based on unsteady vortex lattice method. It is concluded that making FMU is possible utilizing Legacy code made in any language which can be compiled and linked with object in FMI API coded in C language. This paper explains QTronic's method of using FMU SDK(Software Development Kit) and suggestion for using FORTRAN properly. Finally, we make articulated rotor/aerodynamics co-simulation by integrating aerodynamics FMU and rotor FMU developed by Modelica.

A Study on Complexity Reduction for Space-Time Block Codes Decoder in MIMO OFDM systems

  • Pham, Van-Su;Le, Minh-Tuan;Mai, Linh;Yoon, Gi-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.117-121
    • /
    • 2005
  • In this work, we first present our study on the decoding schemes for space-time block code as well as our comments on their complexity. Then, we propose a new modified complex sphere decoding scheme, which has lower computational load than that of conventional complex sphere decoders. In the proposed scheme, the boundary for searching is defined by the intersection of an approximate polygon of searching circle and disk of lattice constellation. Therefore, the proposed scheme can reduce the searching boundary and it can avoid missing searching points as well. The performance of the proposed scheme, which is verified by computer simulations, consolidates our scheme.

  • PDF

Multidisciplinary UAV Design Optimization Implementing Multi-Fidelity Analysis Techniques (다정밀도 해석기법을 이용한 무인항공기 다분야통합 최적설계)

  • Lee, Jae-Woo;Choi, Seok-Min;Van, Nguyen Nhu;Kim, Ji-Min;Byun, Yung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.8
    • /
    • pp.695-702
    • /
    • 2012
  • In this study, Multi-fidelity analysis is performed to improve the accuracy of analysis result during conceptual design stage. Multidisciplinary Design Optimization(MDO) method is also considered to satisfy the total system requirements. Low-fidelity analysis codes which are based on empirical equations are developed and validated for analyzing the Unmanned Aerial Vehicle(UAV) which have unconventional configurations. Analysis codes consist of initial sizing, aerodynamics, propulsion, mission, weight, performance, and stability modules. Design synthesis program which is composed of those modules is developed. To improve the accuracy of the design method for UAV, Vortex Lattice Method is used for the strategy of MFA. Multi-Disciplinary Feasible(MDF) method is used for MDO technique. To demonstrate the validity of presented method, the optimization results of both methods are compared. According to those results, the presented method is demonstrated to be applicable to improve the accuracy of the analyses during conceptual design stage.