• Title/Summary/Keyword: latin hypercube sampling technique

Search Result 54, Processing Time 0.026 seconds

Design Optimization of a Fan-Shaped Film-Cooling Hole Using a Radial Basis Neural Network Technique (홴형상 막냉각홀의 신경회로망 기법을 이용한 최적설계)

  • Lee, Ki-Don;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.4
    • /
    • pp.44-53
    • /
    • 2009
  • Numerical design optimization of a fan-shaped hole for film-cooling has been carried out to improve film-cooling effectiveness by combining a three-dimensional Reynolds-averaged Navier-Stokes analysis with the radial basis neural network method, a well known surrogate modeling technique for optimization. The injection angle of hole, lateral expansion angle of hole and ratio of length-to-diameter of the hole are chosen as design variables and spatially averaged film-cooling effectiveness is considered as an objective function which is to be maximized. Twenty training points are obtained by Latin Hypercube sampling for three design variables. Sequential quadratic programming is used to search for the optimal point from the constructed surrogate. The film-cooling effectiveness has been successfully improved by the optimization with increased value of all design variables as compared to the reference geometry.

A Study on Injection Mold Design Using Approximation Optimization (근사 최적화 방법을 이용한 사출금형 설계에 관한 연구)

  • Byon, Sung-Kwang;Choi, Ha-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.55-60
    • /
    • 2020
  • The injection molding technique is a processing method widely used for the production of plastic parts. In this study, the gate position, gate size, packing time, and melt temperature were optimized to minimize both the stress and deformation that occur during the injection molding process of medical suction device components. We used a central composite design and Latin hypercube sampling to acquire the data and adopted the response surface method as an approximation method. The efficiency of the optimization of the injection molding problem was determined by comparing the results of a genetic algorithm, sequential quadratic programming, and a non-dominant classification genetic algorithm.

DESIGN OPTIMIZATION OF UPPER PLENUM OF PBMR USING RESPONSE SURFACE APPROXIMATION (반응면기법을 이용한 PBMR 기체냉각형 고온가스로 상층부의 최적설계)

  • Lee, S.M.;Kim, K.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.187-194
    • /
    • 2010
  • Shape optimization of an upper plenum of PBMR type gas cooled nuclear reactor has been performed by using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) analysis and surrogate modeling technique. The objective function is defined as a linear combination of uniformity of flow distribution in the core and pressure drop in the upper plenum and the core. The ratio of thickness of slot to diameter of rising channels, ratio of height of upper plenum to diameter of rising channels, and ratio of eight of the slot at inlet to outlet, are used as design variables for optimization. Design points are selected through Latin-hypercube sampling. The optimal point is determined through surrogate-based optimization method which uses 3-D RANS analyses at design points. The results show that the optimum shape represent remarkably improved performance in flow uniformity and friction loss than the reference shape.

  • PDF

DESIGN OPTIMIZATION OF UPPER PLENUM OF PBMR USING RESPONSE SURFACE APPROXIMATION (반응면기법을 이용한 PBMR 기체냉각형 고온가스로 상층부의 최적설계)

  • Lee, S.M.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.16-23
    • /
    • 2010
  • Shape optimization of an upper plenum of a PBMR type gas cooled nuclear reactor has been performed by using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) analysis and surrogate modeling technique. The objective function is defined as a linear combination of uniformity of flow distribution in the core and pressure drop in the upper plenum and the core. The ratio of thickness of slot to diameter of rising channels, ratio of height of upper plenum to diameter of rising channels, and ratio of height of the slot at inlet to outlet, are used as design variables for optimization. Design points are selected through Latin-hypercube sampling. The optimal point is determined through surrogate-based optimization method which uses 3-D RANS analyses at design points. The results show that the optimum shape represent remarkably improved performance in flow uniformity and friction loss than the reference shape.

Electromagnet Design for 10 MeV AVF Cyclotron Using the Sequential Approximation Technique (순차적 근사화기법을 이용한 10 MeV AVF 사이클로트론 전자석 설계)

  • Kim, Su-Hun;Kwak, Chang-Seob;Lee, Se-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.788-789
    • /
    • 2015
  • 본 논문에서는 사이클로트론 전자석의 설계과정을 체계화하고, 자기장 최적화 과정을 순차적 근사화 기법을 이용하여 설계를 진행하였다. 설계하는 전자석은 방사성동위원소생산을 목적으로하는 PET(Positron Emission Tomography) 사이클로트론 이며, 크기를 줄이고 동위원소의 효율적인 생산을 위해 에너지대역은 10MeV로 선정하였다. 설계과정은 실험계획법 중 하나인 LHS(Latin Hypercube Sampling) 기법을 통해 샘플 데이터를 구성하고, 이를 바탕으로 크리깅을 이용해 근사모델을 구성한다. 근사 모델과 진화 알고리즘을 이용해 목적에 맞는 최적의 형상을 찾을 수 있다. 이러한 과정을 반복함으로써 점진적으로 목적에 부합하는 형상을 찾을 수 있다. 각각의 형상의 성능을 판단하는 목적함수를 단계별로 규칙을 정함으로써 결과의 신뢰도를 높인다. 이로써 시간적 효율을 증대시키고 전문지식이 부족한 설계자도 고성능의 형상을 얻을 수 있다. 최적화과정은 STEP1과 STEP2로 나누어 진행되며, STEP1에서는 초기사이클로트론 전자석을 설계하고, 자기장 최적화를 진행한다. STEP2에서는 빔 시뮬레이션 및 분석을 통하여 최적화를 진행하고, 최종적으로 전자석모델을 완성한다.

  • PDF

Uncertainty and Sensitivity Analysis on A Biosphere Model

  • Park, Wan-Sou;Kim, Tae-Woon;Lee, Kun-Jai
    • Journal of Radiation Protection and Research
    • /
    • v.15 no.2
    • /
    • pp.101-112
    • /
    • 1990
  • For the performance assessment of the radioactive waste disposal system (repository), a biosphere model is suggested. This biosphere model is intended to calculate the annual doses to man caused by the contaminated river water for eight pathways and four radionuclides. This model can also be applied to assess the radiological effects of contaminated well water. To account for the uncertainties on the model parameter values, parameter distributions are assigned to these model parameters. Then, Monte Carlo simulation method with Latin Hypercube sampling technique is used. Also, sensitivity analysis is performed by using the Spearman rank correlation coefficients. It is found that these methods are a very useful tool to treat uncertainties and sensitivities on the model parameter values and to analyze the biosphere model. A conversion factor is proposed to calculate the annual dose rate to humans arising from a unit radionuclide concentration in river water. This conversion factor allows for the substitution of the biosphere model in a probabilistic performance assessment computer code by one single variable.

  • PDF

Stochastic Finite Element Analysis of Underground Structure Considering the Multi-Random Variables in the Physical Properties of Rock mass (다확률변수를 고려한 불확정 지하구조계의 확률론적 유한요소해석)

  • 최규섭;정영수;황신일
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.04a
    • /
    • pp.173-181
    • /
    • 1996
  • In this study, a stochastic finite element model is proposed with a view to consider the uncertainty of physical properties of rock mass in the analysis of structural behavior on underground caverns. Here, the Latin Hypercube Sampling technique, in which can makeup weak points of the Monte Carlo Simulation, is applied for the analysis of underground cavern. The validity of the newly developed computer program has been confirmed in terms of verification examples. And, the applicability of the program to the field has been tested in terms of the analysis of the underground oil storage cavern in korea.

  • PDF

Shape Optimization of Cylindrical Film-Cooling Hole Using Kriging Method (크리깅 기법을 이용한 원통형 막냉각 홀의 최적설계)

  • Lee, Ki-Don;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2729-2732
    • /
    • 2008
  • Cylindrical film-cooling hole is formulated numerically and optimized to enhance film-cooling effectiveness. The Kriging method is used an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid and heat transfer with shear stress transport model. The hole length-to-diameter ratio and injection angle are chosen as design variables and spatially averaged film-cooling effectiveness is considered as objective function which is to be maximized. Twelve training points obtained by Latin Hypercube Sampling for two design variables. Optimum shape shows the film-cooling effectiveness increased.

  • PDF

Design Optimization of a Cylindrical Film-Cooling Hole Using Neural Network Techniques (신경회로망기법을 사용한 원통형 막냉각 홀의 최적설계)

  • Lee, Ki-Don;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.12
    • /
    • pp.954-962
    • /
    • 2008
  • This study presents a numerical procedure to optimize the shape of cylindrical cooling hole to enhance film-cooling effectiveness. The RBNN method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer with shear stress transport turbulent model. The hole length-to-diameter ratio and injection angle are chosen as design variables and film-cooling effectiveness is considered as objective function which is to be maximized. Twelve training points are obtained by Latin Hypercube Sampling for two design variables. In the sensitivity analysis, it is found that the objective function is more sensitive to the injection angle of hole than the hole length-to diameter ratio. Optimum shape gives considerable increase in film-cooling effectiveness.

Assessing the Feasibility of an Accident Management Strategy Using Dynamic Reliability Methods

  • Moosung Jae;Kim, Jae-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 1997
  • This paper presents a new dynamic approach for assessing feasibility associated with the implementation of accident management strategies by the operators. This approach includes the combined use of both the concept of reliability physics and a dynamic event tree generation scheme. The reliability physics is based on the concept of a comparison between two competing variables, i.e., the requirement and the achievement parameter, while the dynamic event tree generation scheme on the continuous generation of the possible event sequences at every branch point up to the desired solution. This approach is applied to a cavity flooding strategy in a reference plant, which is to supply water into the reactor cavity using emergency fire systems in the station blackout sequence. The MAAP code and Latin Hypercube sampling technique are used to determine the uncertainty of the requirement parameter. It has been demonstrated that this combined methodology may contribute to assessing the success likelihood of the operator actions required during accidents and therefore to developing the accident management procedures.

  • PDF