• Title/Summary/Keyword: lateral-torsional-buckling

Search Result 123, Processing Time 0.019 seconds

An alternative evaluation of the LTB behavior of mono-symmetric beam-columns

  • Yilmaz, Tolga;Kirac, Nevzat;Anil, O zgur
    • Steel and Composite Structures
    • /
    • v.30 no.5
    • /
    • pp.471-481
    • /
    • 2019
  • Beam-columns are structural members subjected to a combination of axial and bending forces. Lateral-torsional buckling is one of the main failure modes. Beam-columns that are bent about its strong axis may buckle out of the plane by deflecting laterally and twisting as the values of the applied loads reach a limiting state. Lateral-torsional buckling failure occurs suddenly in beam-column elements with a much greater in-plane bending stiffness than torsional or lateral bending stiffness. This study intends to establish a unique convenient closed-form equation that it can be used for calculating critical elastic lateral-torsional buckling load of beam-column in the presence of a known axial load. The presented equation includes first order bending distribution, the position of the loads acting transversely on the beam-column and mono-symmetry property of the section. Effects of axial loads, slenderness and load positions on lateral torsional buckling behavior of beam-columns are investigated. The proposed solutions are compared to finite element simulations where thin-walled shell elements including warping are used. Good agreement between the analytical and the numerical solutions is demonstrated. It is found out that the lateral-torsional buckling load of beam-columns with mono-symmetric sections can be determined by the presented equation and can be safely used in design procedures.

Lateral buckling formula of stepped beams with length-to-height ratio factor

  • Park, Jong Sup
    • Structural Engineering and Mechanics
    • /
    • v.18 no.6
    • /
    • pp.745-757
    • /
    • 2004
  • Lateral-torsional buckling moment resistances of I-shaped stepped beams with continuous lateral top-flange bracing under a single point load on the top flange and negative end moments were investigated. Stepped beam factors and a moment gradient correction factor suggested by Park et al. (2003, 2004) were used to develop new lateral buckling formula for beam designs. From the investigation of finite element analysis (FEA), new lateral buckling formula of beams with singly or doubly stepped member changes and with continuous lateral top-flange bracing subjected to a single point load on top flange and end moments were developed. The new design equation includes the length-to-height ratio factor to account for the increase of lateral-torsional buckling moment resistance as the increase of length-to-height ratio of stepped beams. The calculation examples for obtaining lateral-torsional buckling moment resistance using the new design equation indicate that engineers should easily determine the buckling capacity of the stepped beams.

Simplified approach to estimate the lateral torsional buckling of GFRP channel beams

  • Kasiviswanathan, M.;Anbarasu, M.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.523-533
    • /
    • 2021
  • The present study investigates the lateral torsional buckling behaviour of pultruded glass fiber reinforced polymer (GFRP) simply supported channel beams subjected to uniform bending about their major axis. A parametric study by varying the sectional geometry and span of channel beams is carried out by using ABAQUS software. The accuracy of the FE models was ensured by verifying them against the available results provided in the literature. The effect of geometric nonlinearity, geometric imperfections, and the dependency of finite element mesh on the lateral torsional buckling were carefully considered in the FE model. Lateral torsional buckling (LTB) strengths obtained from the numerical study were compared with the theoretical LTB strengths obtained based on the Eurocode 3 approach for steel sections. The comparison between the numerical strengths and the design procedure proposed in the literature based on Eurocode 3 approach revealed disagreements. Therefore, a simplified improved design procedure is proposed for the safe design strength prediction of pultruded GFRP channel beams. The proposed equation has been provided that might aid the structural engineers in economically designing the pultruded GFRP channel beams in the future.

Inelastic lateral-torsional buckling strengths of stepped I-beams subjected to general loading condition

  • Park, Jong Sup;Park, Yi Seul
    • Structural Engineering and Mechanics
    • /
    • v.48 no.2
    • /
    • pp.275-289
    • /
    • 2013
  • The cross sections of multi-span beams are sometimes suddenly increased at the interior support of continuous beams to resist high negative moment. An earlier study on elastic lateral torsional buckling of stepped beams was conducted to propose new design equations. This research aims to continue the earlier study by considering the effect of inelastic buckling of stepped beams subjected to pure bending and general loading condition. A three-dimensional finite element-program ABAQUS and a statistical program MINITAB were used in the development of new design equations. The inelastic lateral torsional buckling strengths of 36 and 27 models for singly and doubly stepped beams, respectively, were investigated. The general loading condition consists of 15 loading cases based on the number of inflection point within the unbraced length of the stepped beams. The combined effects of residual stresses and geometrical imperfection were also considered to evaluate the inelastic buckling strengths. The proposed equations in this study will definitely improve current design methods for the inelastic lateral-torsional buckling of stepped beams and will increase efficiency in building and bridge design.

Evaluation of Lateral-Torsional Buckling Strength of I-Girder with Corrugated Web under Uniform Bending (균일한 휨모멘트가 작용하는 파형강판 복부판 I-거더의 횡-비틂 좌굴강도 평가)

  • Moon, Ji Ho;Yi, Jong Won;Choi, Byung Ho;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.463-472
    • /
    • 2007
  • This paper presents theoretical and finite element analysis results for the lateral-torsional buckling of I-girders with corrugated web under uniform bending. Lateral-torsional buckling is a major design aspect for flexural members composed of thin-walled I-section. However, torsional rigidities such as the warping constants of the I-girders with corrugated web are not fully understood yet. In this paper, bending and pure torsional rigidities of I-girders with corrugated web are first described using the results of previous researchers. Then, the location of the shear center and the warping constants are derived. Using the derived section properties of I-girders with corrugated web, the lateral-torsional buckling strength is determined. Finite element analyses are conducted and the proposed lateral-torsional buckling strength of I-girders with corrugated web is successfully verified. Finally, the effects of corrugation profiles of the web on the lateral-torsional buckling load of I-girders with corrugated web are discussed.

Distortional buckling of I-steel concrete composite beams in negative moment area

  • Zhou, Wangbao;Li, Shujin;Huang, Zhi;Jiang, Lizhong
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.57-70
    • /
    • 2016
  • The predominant type of buckling that I-steel concrete composite beams experience in the negative moment area is distortional buckling. The key factors that affect distortional buckling are the torsional and lateral restraints by the bottom flange. This study thoroughly investigates the equivalent lateral and torsional restraint stiffnesses of the bottom flange of an I-steel concrete composite beam under negative moments. The results show a coupling effect between the applied forces and the lateral and torsional restraint stiffnesses of the bottom flange. A formula is proposed to calculate the critical buckling stress of the I-steel concrete composite beams under negative moments by considering the lateral and torsional restraint stiffnesses of the bottom flange. The proposed method is shown to better predict the critical bending moment of the I-steel composite beams. This article introduces an improved method to calculate the elastic foundation beams, which takes into account the lateral and torsional restraint stiffnesses of the bottom flange and considers the coupling effect between them. The results show a close match in results from the calculation method proposed in this paper and the ANSYS finite element method, which validates the proposed calculation method. The proposed calculation method provides a theoretical basis for further research on distortional buckling and the ultimate resistance of I-steel concrete composite beams under a variable axial force.

I-girder with Discrete Torsional Bracing: Lateral-torsional Buckling and Torsional Free Vibration (I-거더 불연속 비틀림 브레이싱: 횡-비틂 좌굴 및 비틀림 자유진동)

  • Nguyen, Cahn Tuan;Moon, Ji-Ho;Kim, Hyun-Soo;Lee, Hak-Eun
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.85-85
    • /
    • 2010
  • Discrete torsional bracing systems are widely used in practice to increase the strength of I-girders bridges. This paper proposes equations for lateral-torsional buckling strength, torsional natural frequency and stiffness requirements of I-girders with discrete torsional bracings. Firstly, the equations to calculate the critical moment of the I-girder with discrete torsional bracings are introduced. The proposed equations are then compared with the results of finite element analyses and those from previous studies. The equations to calculate the torsional natural frequency are also presented in the same manner. From the results, it is found that proposed equations agree well with results of finite element analyses regardless of the number of bracing points. Finally, the reduced formula for the total torsional stiffness requirement is proposed for the design purpose.

  • PDF

Buckling analysis of complex structures with refined model built of frame and shell finite elements

  • Hajdo, Emina;Ibrahimbegovic, Adnan;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • v.9 no.1
    • /
    • pp.29-46
    • /
    • 2020
  • In this paper we deal with stability problems of any complex structure that can be modeled by beam and shell finite elements. We use for illustration the steel plate girders, which are used in bridge construction, and in industrial halls or building construction. Long spans, slender cross sections exposed to heavy loads, are all critical design points engineers must take into account. Knowing the critical load that will cause lateral torsional buckling of the girder, or load that can lead to web buckling, as an important scenario to consider in a design process.Many of such problem, including lateral torsional buckling with influence of lateral supports and their spacing on critical load can be solved by the proposed method. An illustrative study of web buckling also includes effects of position and spacing of transverse and longitudinal web stiffeners, where stiffeners can be modelled optionally using shell or frame elements.

Lateral-torsional buckling of functionally graded tapered I-beams considering lateral bracing

  • Rezaiee-Pajand, Mohammad;Masoodi, Amir R.;Alepaighambar, Ali
    • Steel and Composite Structures
    • /
    • v.28 no.4
    • /
    • pp.403-414
    • /
    • 2018
  • In this paper, the lateral-torsional buckling of axially-transversally functionally graded tapered beam is investigated. The structure cross-section is assumed to be symmetric I-section, and it is continuously laterally supported by torsional springs through the length. In addition, the height of cross-section varies linearly throughout the length of structure. The proposed formulation is obtained for the case that the elastic and shear modulus change as a power function along the beam length and section height. This structure carries two concentrated moments at the ends. In this study, the lateral displacement and twisting angle relation of the beam are defined by sinusoidal series. After establishing the eigenvalue equation of unknown constants, the beam critical bending moment is found. To validate the accuracy and correctness of results, several numerical examples are solved.