• Title/Summary/Keyword: lateral stress coefficient

Search Result 49, Processing Time 0.027 seconds

Study on deformation law of surrounding rock of super long and deep buried sandstone tunnel

  • Ding, Lujun;Liu, Yuhong
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.97-104
    • /
    • 2018
  • The finite difference software Flac3D is used to study the influence of tunnel burial depth, tunnel diameter and lateral pressure coefficient of original rock stress on the stress and deformation of tunnel surrounding rock under sandstone condition. The results show that the maximum shear stress, the radius of the plastic zone and the maximum displacement in the surrounding rock increase with the increase of the diameter of the tunnel. When the lateral pressure coefficient is 1, it is most favorable for surrounding rock and lining structure, with the increase or decrease of lateral pressure coefficient, the maximum principal stress, surrounding displacement and plastic zone range of surrounding rock and lining show a sharp increase trend, the plastic zone on the lining increases with the increase of buried depth.

An experimental study on behavior of tunnel in jointed rock mass (절리암반내 터널라이닝 거동에 관한 실험적 연구)

  • Oh, Young-Seok;Park, Yong-Won;Yoon, Hyo-Seok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.4
    • /
    • pp.315-326
    • /
    • 2004
  • This study performed model tunnel tests in order to investigate the influence of discontinuity condition of rock mass to the stress and deformation of tunnel lining. Tests were carried out changing the direction of main joint and lateral earth pressure condition of rock mass. Test results revealed that the axial force in tunnel lining showed a tendency of decrease with the presence of joints. It decreased much with the increase of lateral earth pressure coefficient. And, it also showed that the location or maximum displacement and maximum stress in lining were changed by the direction of main joint of rock mass. The tangential stress and normal stress showed the difference above the maximum twenty times as lateral earth pressure coefficient due to effect of joints increased. Also, these tendencies of concentration of tensile stress in tunnel lining were confirmed by elastic theory.

  • PDF

Characteristics of failure surfaces induced by embankments on soft ground

  • Hong, Eun-Soo;Song, Ki-Il;Yoon, Yeo-Won;Hu, Jong-Wan
    • Geomechanics and Engineering
    • /
    • v.6 no.1
    • /
    • pp.17-31
    • /
    • 2014
  • This paper investigates the development of failure surfaces induced by an embankment on soft marine clay deposits and the characteristics of such surfaces through numerical simulations and its comparative study with monitoring results. It is well known that the factor of safety of embankment slopes is closely related to the vertical loading, including the height of the embankment. That is, an increase in the embankment height reduces the factor of safety. However, few studies have examined the relationship between the lateral movement of soft soil beneath the embankment and the factor of safety. In addition, no study has investigated the distribution of the pore pressure coefficient B value along the failure surface. This paper conducts a continuum analysis using finite difference methods to characterize the development of failure surfaces during embankment construction on soft marine clay deposits. The results of the continuum analysis for failure surfaces, stress, displacement, and the factor of safety can be used for the management of embankment construction. In failure mechanism, it has been validated that a large shear displacement causes change of stress and pore pressure along the failure surface. In addition, the pore pressure coefficient B value decreases along the failure surface as the embankment height increases. This means that the rate of change in stress is higher than that in pore pressure.

A Study on the Shape and Size Effects on the Stability of Underground Openings (지하공동의 형상과 규모가 공동의 안정성에 미치는 영향 연구)

  • 박상찬;문현구
    • Geotechnical Engineering
    • /
    • v.14 no.1
    • /
    • pp.93-108
    • /
    • 1998
  • In this study, the analytic solutions and numerical methods were used to estimate the shape and size effects on the stability of underground openings. The stability of underground openings was evaluated by scrutinizing the effects of the rock mass quality, the state of in-situ stresses and the lateral earth pressure coefficient on the displacement, the stress concentration and the plastic region developed in the vicinity of the openings. The analytic solutions have shown that the stress concentration factor is inversely proportional to the radius of curvature of openings. Through parametric study on the various shapes and sizes of underground openings the characteristics of the controlling factors concerned with the stability were analyzed. Then, the study was extended to the horseshoe-shaped openings commonly used for under ground storage. Through the extended study the effects of the stress ratio and the height-towidth ratio of openings on the maximum displacement and plastic region developed around the openings were estimated. The results have shorn that the height-to-width ratio of domestic storage caverns can be increased economically without stability problem, as far as the lateral earth pressure coefficient is appropriate.

  • PDF

Effects of freezing and thawing on retaining wall with changes in groundwater level

  • Kim, Garam;Kim, Incheol;Yun, Tae Sup;Lee, Junhwan
    • Geomechanics and Engineering
    • /
    • v.24 no.6
    • /
    • pp.531-543
    • /
    • 2021
  • Freezing and thawing of pore water within backfill can affect the stability of retaining wall as the phase change of pore water causes changes in the mechanical characteristics of backfill material. In this study, the effects of freezing and thawing on the mechanical performance of retaining wall with granular backfill were investigated for various temperature and groundwater level (GWL) conditions. The thermal and mechanical finite element analyses were performed by assigning the coefficient of lateral earth pressure according to phase change of soil for at-rest, active and passive stress states. For the at-rest condition, the mobilized lateral stress and overturning moment changed markedly during freezing and thawing. Active-state displacements for the thawed condition were larger than for the unfrozen condition whereas the effect of freezing and thawing was small for the passive condition. GWL affected significantly the lateral force and overturning moment (Mo) acting on the wall during freezing and thawing, indicating that the reduction of safety margin and wall collapse due to freezing and thawing can occur in sudden, unexpected patterns. The beneficial effect of an insulation layer between the retaining wall and the backfill in reducing the heat conduction from the wall face was also investigated and presented.

Strength model for square concrete columns confined by external CFRP sheets

  • Benzaid, Riad;Mesbah, Habib Abdelhak
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.111-135
    • /
    • 2013
  • An experimental study has been carried out on square plain concrete (PC) and reinforced concrete (RC) columns strengthened with carbon fiber-reinforced polymer (CFRP) sheets. A total of 78 specimens were loaded to failure in axial compression and investigated in both axial and transverse directions. Slenderness of the columns, number of wrap layers and concrete strength were the test parameters. Compressive stress, axial and hoop strains were recorded to evaluate the stress-strain relationship, ultimate strength and ductility of the specimens. Results clearly demonstrate that composite wrapping can enhance the structural performance of square columns in terms of both maximum strength and ductility. On the basis of the effective lateral confining pressure of composite jacket and the effective FRP strain coefficient, new peak stress equations were proposed to predict the axial strength and corresponding strain of FRP-confined square concrete columns. This model incorporates the effect of the effective circumferential FRP failure strain and the effect of the effective lateral confining pressure. The results show that the predictions of the model agree well with the test data.

Development of an Artificial Neural Expert System for Rational Determination of Lateral Earth Pressure Coefficient (합리적인 측압계수 결정을 위한 인공신경 전문가 시스템의 개발)

  • 문상호;문현구
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.99-112
    • /
    • 1999
  • By using 92 values of lateral earth pressure coefficient(K) measured in Korea, the tendency of K with varying depth is analyzed and compared with the range of K defined by Hoek and Brown. The horizontal stress is generally larger than the vertical stress in Korea : About 84 % of K values are above 1. In this study, the theory of elasto-plasticity is applied to analyze the variation of K values, and the results are compared with those of numerical analysis. This reveals that the erosion, sedimentation and weathering of earth crust are important factors in the determination of K values. Surface erosion, large lateral pressure and good rock mass increase the K values, but sedimentation decreases the K values. This study enable us to analyze the effects of geological processes on the K values, especially at shallow depth where underground excavation takes place. A neural network expert system using multi-layer back-propagation algorithm is developed to predict the K values. The neural network model has a correlation coefficient above 0.996 when it is compared with measured data. The comparison with 9 measured data which are not included in the back-propagation learning has shown an average inference error of 20% and the correlation coefficient above 0.95. The expert system developed in this study can be used for reliable determination of K values.

  • PDF

Effect of the lateral earth pressure coefficient on settlements during mechanized tunneling

  • Golpasand, Mohammad-Reza B.;Do, Ngoc Anh;Dias, Daniel;Nikudel, Mohammad-Reza
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.643-654
    • /
    • 2018
  • Tunnel excavation leads to a disturbance on the initial stress balance of surrounding soils, which causes convergences around the tunnel and settlements at the ground surface. Considering the effective impact of settlements on the structures at the surface, it is necessary to estimate them, especially in urban areas. In the present study, ground settlements due to the excavation of East-West Line 7 of the Tehran Metro (EWL7) and the Abuzar tunnels are evaluated and the effect of the lateral earth pressure coefficient ($K_0$) on their extension is investigated. The excavation of the tunnels was performed by TBMs (Tunnel Boring Machines). The coefficient of lateral earth pressure ($K_0$) is one of the most important geotechnical parameters for tunnel design and is greatly influenced by the geological characteristics of the surrounding soil mass along the tunnel route. The real (in-situ) settlements of the ground surface were measured experimentally using leveling methods along the studied tunnels and the results were compared with evaluated settlements obtained from both semi-empirical and numerical methods (using the finite difference software FLAC3D). The comparisons permitted to show that the adopted numerical models can effectively be used to predict settlements induced by a tunnel excavation. Then a numerical parametric study was conducted to show the influence of the $K_0$ values on the ground settlements. Numerical investigations also showed that the shapes of settlement trough of the studied tunnels, in a transverse section, are not similar because of their different diameters and depths of the tunnels.

Estimation of Ultimate Lateral Resistances of Piles Using CPT Cone Resistance in Sand (사질토지반에서 콘관입저항치 $q_c$에 의한 단말뚝의 극한수평단위지지력 평가)

  • Kim, Min-Kee;Kyung, Doo-Hyun;Hong, Jung-Moo;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.71-77
    • /
    • 2008
  • In this study, CPT-based methodology for estimating the ultimate lateral resistance, $p_u$, is proposed and verified for lateral loaded piles in sandy soil. Preexistent methods estimating the ultimate lateral resistance, $p_u$, and the ultimate lateral capacity, $H_u$, of pile have been based on the vertical effective stress, relative density, and the coefficient of lateral earth pressure. Similarly, cone resistance $q_c$ in pure sandy soil is expressed by those essential factors. As correlation between $p_u$ and $q_c$ are normalized with average effective stress ${\sigma}_m$, estimation methodology for the lateral loaded pile of $p_u$ in sandy soil is proposed. The method is verified by calibration chamber test results in pure sand. The standard derivation of estimated $p_u$ is 0.279, and COV (Coefficient Of Variation) of estimated $p_u$ is 0.272. These results showed that the estimated pus by the method are analogous with the measured $p_us$ in calibration chamber test.

A Methodolody of Considering the Failure of Supports in Evaluating Tunnel Safety Factors (터널의 안전율 평가 시 지보재 파괴 고려 방안 연구)

  • You Kwang-Ho;Hong Keun-Young;Park Yeon-Jun;Lee Hyun-Koo;Kim Jea-Kwon
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.213-224
    • /
    • 2005
  • The safety factor of a tunnel considering the failure of supports is important because the failure of supports might cause the collapse of the tunnel. In the previous studies, shotcrete was modelled as beam elements and the failure of the shotcrete was checked according to the allowable working stress concept. In this study, shotcrete was modelled by both beam elements and continuum (elasto-plastic) elements. Safety factors of tunnels were estimated by two dimensional numerical analysis with varying rock mass class, coefficient of lateral pressure, thickness of shotcrete, rock bolt reinforcement and excavation method. Also the study suggested not only a proper amount of supports but also modelling method.

  • PDF