• Title/Summary/Keyword: lateral stress

Search Result 807, Processing Time 0.023 seconds

A FEM comparison study about the force, displacement and initial stress distribution on the maxillary first molars by the application of Asymmetric Head-Gears with the different traction forces (Asymmetric Head-Gear의 견인력의 차이에 따른 상악 제 1 대구치에 나타나는 힘과 변위 및 초기 응력분포에 관한 유한요소법적 비교 연구)

  • Cha, Kyung-Suk
    • The korean journal of orthodontics
    • /
    • v.31 no.3 s.86
    • /
    • pp.311-323
    • /
    • 2001
  • One of the various mechanics used to treat unilateral Class II malocclusion is head gear with asymmetric face bow. We made the finite element models of unilateral Class II maxillary dental arch and power arm asymmetric face bow. We designed this experiment to observe stress distribution of periodontal ligament, reaction force, and displacement and to understand force system, so to predict the therapeutic effect. On the basis of computerized tomograph of maxillary dental arch of 25 years old male with normal occlusion without extraction and orthodontic treatment history, we made finite element models of maxillary dental arch and periodontal ligament. Then we modified that model to unilateral maxillary Class II malocclusion model of which maxillary left molar displaced mesially. Also, We made finite element model of asymmetric face bow of which right outer bow shorter than left by 25mm(RMO, Penta-FormTM/Medium size, 0.045 inch iner bow, 0.072 inch outer bow). After that, retraction force of 250g, 300b, 350g were applied to maxillary first molar. We concluded as follow. 1. The Net force that both maxillary first molars were received increased as the retraction force increased. Mesially positioned tooth received more force than normally positioned tooth. But, both tooth were received distal force, so distal movement occured. 2. Both tooth received buccal lateral force. In analysis of force element, as the retraction force were increased, force of X-axis at mesially positioned tooth decreased, and force of X-axis at normally positioned tooth increased. so lateral force component moved to the side received less force from more force. 3. There were rotation, tipping with distal movement in maxillary first molar. As retraction force were increased, rotation and tipping also increased. More tipping and rotation occured at the side received more force, that is, mesially positioned tooth. Though it Is small change, displacement of same pattern occur in normally positioned tooth

  • PDF

Influence of Column Aspect Ratio on the Hysteretic Behavior of Slab-Column Connection (슬래브-기둥 접합부의 이력거동에 대한 기둥 형상비의 영향)

  • Choi, Myung-Shin;Cho, In-Jung;Ahn, Jong-Mun;Shin, Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.515-525
    • /
    • 2007
  • In this investigation, results of laboratory tests on four reinforced concrete flat plate interior connections with elongated rectangular column support which has been used widely in tall residential buildings are presented. The purpose of this study is to evaluate an effect of column aspect ratio (${\beta}_c={c_1}/{c_2}$=side length ratio of column section in the direction of lateral loading $(c_1)$ to the direction of perpendicular to $c_1$) on the hysteretic behavior under earthquake type loading. The aspect ratio of column section was taken as $0.5{\sim}3\;(c_1/c_2=1/2,\;1/1,\;2/1,\;3/1)$ and the column perimeter was held constant at 1200mm in order to achieve nominal vertical shear strength $(V_c)$ uniformly. Other design parameters such as flexural reinforcement ratio $(\rho)$ of the slab and concrete strength$(f_{ck})$ was kept constant as ${\rho}=1.0%$ and $f_{ck}=40MPa$, respectively. Gravity shear load $(V_g)$ was applied by 30 percent of nominal vertical shear strength $(0.3V_o)$ of the specimen. Experimental observations on punching failure pattern, peak lateral-load and story drift ratio at punching failure, stiffness degradation and energy dissipation in the hysteresis loop, and steel and concrete strain distributions near the column support were examined and discussed in accordance with different column aspect ratio. Eccentric shear stress model of ACI 318-05 was evaluated with experimental results. A fraction of transferring moment by shear and flexure in the design code was analyzed based on the test results.

The Effects of Discrepancy in Reconstruction Algorithm between Patient Data and Normal Database in AutoQuant Evaluation: Focusing on Half-Time Scan Algorithm in Myocardial SPECT (심근 관류 스펙트에서 Half-Time Scan과 새로운 재구성법이 적용된 정상군 데이터를 기반으로 한 정량적 분석 결과의 차이 비교)

  • Lee, Hyung-Jin;Do, Yong-Ho;Cho, Seong-Wook;Kim, Jin-Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.122-126
    • /
    • 2014
  • Purpose: The new reconstruction algorithms (NRA) provided by vendor aim to shorten the acquisition scan time. Whereas depending on the installed version AutoQuant program used for myocardial SPECT quantitative analysis did not contain the normal data that NRA is applied. Thus, the purpose of this paper is to compare the results according to AutoQuant versions in myocardial SPECT applied NRA and half-time scan (HT). Materials and Methods: Rest Tl and stress MIBI data of total 80 (40 men, 40 women) patients were gathered. Data were applied HT acquisition and ASTONISH (Philips) software which is NRA. Modified autoquant of SNUH and old version of AutoQuant (full-time scan) provided by company were compared. Comparison groups were classified as coronary artery disease (CAD), 24 hrs delay and almost normal patients who have a simple pain patient. Perfusion distribution aspect, summed stress score (SSS), summed rest score (SRS), extent and total perfusion deficit (TPD) of each 25 patient who have above diseases were compared and evaluated. Results: The case of CAD, when using re-edited AutoQuant (HT) SSS and SRS showed about 30% reduction (P<0.0001), Extent showed about 38% reduction and TPD showed about 30% reduction in the tendency (P<0.0001). In the score of the perfusion, especially on the part of infero-medium, infero-apical, lateral-medium and lateral-apical regions were the biggest change. The case of the 24 hrs delay patient SRS (P=0.042), Extent (P=0.018) and TPD (P=0.0024) showed about 13-18% reduction. And the case of simple pain patient, comparison of 4 results showed about 5-7% reduction. Conclusion: This study was started based on expectation that results could be affected by normal patient data. Normal patient data is possible to change by race and gender. It was proved that combination of new reconstruction algorithm for reducing scan time and analysis program according to scan protocol with NRA could also be affected to results. Clinical usefulness of gated myocardial SPECT is possibly increased if each hospital properly collects normal patient data for their scan acquisition protocol.

  • PDF

Geometry and Kinematics of the Northern Part of Yeongdeok Fault (영덕단층 북부의 기하와 운동학적 특성)

  • Gwangyeon Kim;Sangmin Ha;Seongjun Lee;Boseong Lim;Min-Cheol Kim;Moon Son
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.1
    • /
    • pp.55-72
    • /
    • 2023
  • This study aims to identify the fault zone architecture and geometric and kinematic characteristics of the Yeongdeok Fault, based on the geometry and kinematic data of various structural elements obtained by detailed field survey and anisotropy of magnetic susceptibility (AMS) of the fault rocks. The Yeongdeok Fault extends from Opo-ri, Ganggu-myeon, Yeongdeok-gun to Gilgok-ri, Maehwa-myeon and Bangyul-ri, Giseong-myeon, Uljin-gun, and cuts various rock types from the Paleo-proterozoic to the Mesozoic with a range of 4.6-5.0 km (4.77 km in average) of right-lateral offset or forms the rock boundaries. The fault is divided into four segments based on its geometric features and shows N-S to NNW strikes and dips of an angle of ≥ 54° to the east at most outcrops, even though the outcrops showing the westward dipping (a range of 54°-82°) of fault surface increase as it goes north. The Yeongdeok Fault shows the difference in the fault zone architecture and in the fault core width ranging from 0.3 to 15 m depending on the bedrock type, which is interpreted as due to differences in the physical properties of bedrock such as ductility, mineral composition, particle size, and anisotropy. Combining the results of paleostress reconstruction and AMS in this and previous studies, the Yeongdeok Fault experienced (1) sinistral strike-slip under NW-SE maximum horizontal principle stress (σHmax) and NE-SW minimum horizontal principle stress (σHmin) in the late Cretaceous to early Cenozoic, and then (2) dextral strike-slip under NE-SW maximum horizontal principle stress (σHmax) and NW-SE minimum horizontal principle stress (σHmin) in the Paleogene. It is interpreted that the deformation caused by the Paleogene dextral strike-slip movement was the most dominant, and the crustal deformation was insignificant thereafter.

Cenozoic Geological Structures and Tectonic Evolution of the Southern Ulleung Basin, East Sea(Sea of Japan) (동해 울릉분지 남부해역의 신생대 지질구조 및 지구조 진화)

  • Choi Dong-Lim;Oh Jae-Kyung;Mikio SATOH
    • The Korean Journal of Petroleum Geology
    • /
    • v.2 no.2 s.3
    • /
    • pp.59-70
    • /
    • 1994
  • The Cenozoic geological structures and the tectonic evolution of the southern Ulleung Basin were studied with seismic profiles and exploration well data. Basement structure of the Korea Strait is distinctly characterized by normal faults trending northeast to southwest. The normal faults of the basement are most likely related to the initial liking and extensional tectonics of Ulleung Basin. Tsushima fault along the west coast of Tsushima islands runs northeastward to the central Ulleung Basin. The Middle Miocene and older sequences in the Tsushima Strait show folds and faults mostly trending northeast to southwest. These folds and faults may be interpreted as a result of compressional tectonics. The Late Miocene to Qauternary sequences are not much deformed, but numerous faults mostly N-S trending are dominated in the Tsushima Strait. The Ulleung Basin was in intial rifting during Oligocene, and then active extension and subsidence from Early to early Middle Miocene. Therefore SW Japan separated from Korea Peninsula and drifted toward southeast, and Ulleung Basin was formed as a pull-apart basin under dextral transtensional tectonic regime. During rifting and extensional stage, Tsushima fault as a main tectonic line separating SW Japan block from the Korean Peninsula acted as a normal faulting with right-lateral strike-slip motion as SW Japan drifted southeastward. During middle Middle Miocene to early Late Miocene, the opening of Ulleung basin stopped and uplifted due to compressional tectonics. The southwest Japan block converging on the Korean Peninsula caused compressional stress to the southern margin of Ulleung Basin, resulting in strong deformation under sinistral transpressional tectonic regime. Tsushima fault acted as thrust fault with left-lateral strike-slip motion. From middle Late Miocene to Quaternary, the southern margin of Ulleung Basin has been controlled by compressional motion. Thus the Tsushima fault still appears to be an active thrust fault by compressional tectonic regime.

  • PDF

Evaluation of Particle Size Effect on Dynamic Behavior of Soil-pile System (모래 지반의 입자크기가 지반-말뚝 시스템의 동적 거동에 미치는 영향 평가)

  • Han, Jin-Tae;Yoo, Min-Taek;Yang, Eui-Kyu;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.49-58
    • /
    • 2010
  • This paper presents experimental results of a series of 1-g shaking table model tests performed on end-bearing single piles and pile groups to investigate the effect of particle size on the dynamic behavior of soil-pile systems. Two soil-pile models were tested twice: first using Jumoonjin sand, and second using Australian Fine sand. In the case of single-pile models, the lateral displacement was almost within 1% of pile diameter which corresponds to the elastic range of the pile. The back-calculated p-y curves show that the subgrade reaction of the Jumoonjin-sand-model ground was larger than that of the Australian Fine-sand-model ground at the same displacement. This phenomenon means that the stress-strain behavior of Jumoonjin sand was initially stiffer than that of Australian Fine sand. This difference was also confirmed by resonant column tests and compression triaxial tests. And the single pile p-y backbone curves of the Australian fine sand were constructed and compared with those of the Jumoonjin sand. As a result, the stiffness of the p-y backbone curves of Jumunjin sand was larger than those of Australian fine sand. Therefore, using the same p-y curves regardless of particle size can lead to inaccurate results when evaluating dynamic behavior of soil-pile system. In the case of the group-pile models, the lateral displacement was much larger than the elastic range of pile movement at the same test conditions in the single-pile models. The back-calculated p-y curves in the case of group pile models were very similar in both sands because the stiffness difference between the Jumoonjin-sand-model ground and the Australian Fine-sand-model ground was not significantly large at a large strain level, where both sands showed non-linear behavior. According to a series of single pile and group pile test results, the evaluation group pile effect using the p-multiplier can lead to inaccurate results on dynamic behavior of soil-pile system.

The Effect of Cement Milk Grouting on the Deformation Behavior of Jointed Rock Mass (시멘트현탁액 주입에 의한 절리암반의 역학적 특성 변화)

  • 김태혁;이정인
    • Tunnel and Underground Space
    • /
    • v.13 no.5
    • /
    • pp.331-343
    • /
    • 2003
  • Though the Grouting has been in use for a long time, it is still regarded as an technique rather than engineering. The study of ground improvement by grouting is rare especially in jointed rock mass. In this study, biaxial compression tests were performed in the jointed rock mass models with .ough surfBce joints assembled with blocks before and after grouting. The load-deformation curves of the jointed rock masses showed a non-linear relationship before grouting but showed a relatively linear deformaion behavior after grouting. Improvement ratio (deformation modulus after grouting/deformation modulus before grouting) decreased with increasing joint spacing and lateral stress. Improvement ratio decreased exponentially with increasing deformation modulus of the rock mass model before grouting. Three-dimensional FDM analysis was performed to a highway tunnel case using experimental data of grouted rock. The convergence of the tunnel predicted after grouting by the numerical modelling coincided with those attained from the field measurement.

Estimation of Lateral Dynamic P-multiplier of Group Pile Using Dynamic Numerical Analysis Results (동적 수치해석 결과를 이용한 군말뚝의 횡방향 동적 P-승수 산정)

  • Park, Jeong-Sik;Jeong, Sang-Seom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.567-578
    • /
    • 2018
  • In this study, to investigate the effect of the stress reduction of group piles by dynamic loading, a dynamic p-y curve was established and the dynamic p-multiplier was calculated. Dynamic numerical analysis was performed by input sinusoidal waves to the bottom of the pile - ground system for $2{\times}2$ group pile, single pile and $5{\times}5$ group pile, single pile in dry sandy soil, and the pile spacing was changed to 2.5 and 5.0 times of the pile diameter. By establishing and comparing the dynamic p-y curves of the single pile and group piles, the dynamic group pile effect of the piles according to the pile center spacing and row position of the group pile piles is analyzed. $5{\times}5$ showed symmetry of the dynamic P-multiplier value around the pile origin coordinate. The dynamic p-multiplier value at the single pile, $5{\times}5$ pile (pile spacing: 2.5D) is 0.26 ~ 0.30 at the pile number 3, pile number 23, 0.14 pile number 13, and 0.14 ~ 0.38 at the pile number 5, pile number 18. These values differed from the static p-multiplier, especially due to the different loading conditions. The dynamic p-multiplier ($P_{dm}$) estimation through various types of input dynamic loads is expected to be used for dynamic design and analysis of group pile-ground systems of civil foundation structures.

3-Dimensional Performance Optimization Model of Snatch Weightlifting

  • Moon, Young-Jin;Darren, Stefanyshyn
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.2
    • /
    • pp.157-165
    • /
    • 2015
  • Object : The goals of this research were to make Performance Enhanced Model(PE) taken the largest performance index (PI) through artificial variation of principle components calculated by principle component analysis for trial data, and to verify the effect through comparing kinematic factors between trial data (Raw) and PE. Method : Ten subjects (5 men, 5 women) were recruited and 80% of their maximal record was considered. The PI is a regression equation. In order to develop PE, we extracted Principle components from trial position data (by Principle Components Analysis (PCA)). Before PCA, we made 17 position data to 3 row matrix according to components. We calculated 3 eigen value (principle components) through PCA. And except Y (medial-lateral direction) component (because motion of Y component is small), principle components of X (anterior-posterior direction) and Z (vertical direction) components were changed as following. Changed principle components = principle components + principle components ${\times}$ k. After changing the each principle component, we reconstructed position data using the changed principle components and calculated performance index (PI). A Paired t-test was used to compare Raw data and Performance Enhanced Model data. The level of statistical significance was set at $p{\leq}0.05$. Result : The PI was significantly increased about 12.9kg at PE ($101.92{\pm}6.25$) when compared to the Raw data ($91.29{\pm}7.10$). It means that performance can be increased by optimizing 3D positions. The difference of kinematic factors as follows : the movement distance of the bar from start to lock out was significantly larger (about 1cm) for PE, the width of anterior-posterior bar position in full phase was significantly wider (about 1.3cm) for PE and the horizontal displacement toward the weightlifter after beginning of descent from maximal height was significantly greater (about 0.4cm) for PE. Additionally, the minimum knee angle in the 2-pull phase was significantly smaller (approximately 2.7cm) for the PE compared to that of the Raw. PE was decided at proximal position from the Raw (origin point (0,0)) of PC variation). Conclusion : PI was decided at proximal position from the Raw (origin point (0,0)) of PC variation). This means that Performance Enhanced Model was decided by similar motion to the Raw without a great change. Therefore, weightlifters could be accept Performance Enhanced Model easily, comfortably and without large stress. The Performance Enhance Model can provide training direction for athletes to improve their weightlifting records.

Effects of Central Interleukin-1 on the Cardiovascular Response in Hemorrhaged Rats

  • Kang, Joon-Ho;Jang, Jae-Hee;Ahn, Dong-Kuk;Park, Jae-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.2
    • /
    • pp.89-94
    • /
    • 2004
  • The arterial pressure is regulated by the nervous and humoral mechanisms. The neuronal regulation is mostly carried out by the autonomic nervous system through the rostral ventrolateral medulla (RVLM), a key area for the cardiovascular regulation, and the humoral regulation is mediated by a number of substances, including the angiotensin (Ang) II and vasopressin. Recent studies suggest that central interleukin-1 (IL-1) activates the sympathetic nervous system and produces hypertension. The present study was undertaken to elucidate whether IL-1 and Ang II interact in the regulation of cardiovascular responses to the stress of hemorrhage. Thus, Sprague-Dawley rats were anesthetized and both femoral arteries were cannulated for direct measurement of arterial pressure and heart rate (HR) and for inducing hemorrhage. A guide cannula was placed into the lateral ventricle for injection of IL-1 $(0.1,\;1,\;10,\;20\;ng/2\;{\mu}l)$ or Ang II $(600\;ng/10\;{\mu}l)$. A glass microelectrode was inserted into the RVLM to record the single unit spike potential. Barosensitive neurons were identified by an increased number of single unit spikes in RVLM following intravenous injection of nitroprusside. I.c.v. $IL-1\;{\beta}$ increased mean arterial pressure (MAP) in a dose-dependent fashion, but HR in a dose-independent pattern. The baroreceptor reflex sensitivity was not affected by i.c.v. $IL-1\;{\beta}$. Both i.c.v. $IL-1\;{\alpha}\;and\;{\beta}$ produced similar increase in MAP and HR. When hemorrhage was induced after i.c.v. injection of $IL-1\;{\beta}$, the magnitude of MAP fall was not different from the control. The $IL-1\;{\beta}$ group showed a smaller decrease in HR and a lower spike potential count in RVLM than the control. MAP fall in response to hemorrhage after i.c.v. injection of Ang II was not different from the control. When both IL-1 and Ang II were simultaneously injected i.c.v., however, MAP fall was significantly smaller than the control, and HR was increased rather than decreased. These data suggest that IL-1, a defense immune mediator, manifests a hypertensive action in the central nervous system and attenuates the hypotensive response to hemorrhage by interaction with Ang II.