• Title/Summary/Keyword: lateral stress

Search Result 807, Processing Time 0.027 seconds

Test and Analysis on the Transverse Gusset Plate Connection to Circular Hollow Section(CHS) of High Strength (고강도 원형강관의 직각방향 거셋플레이트 접합부 실험 및 해석)

  • Lee, Swoo-Heon;Shin, Kyung-Jae;Lee, Hee-Du;Kim, Woo-Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.163-173
    • /
    • 2012
  • A connection composed of a circular hollow structural section (HSS) has complicated details, and exhibits a very complex local deformation when it reaches the yield stress. Given these circumstances, proposing a simple design equation considering local deformation is difficult. The design equations of the Korea Building Code (KBC 2009) for HSS joints are simple and are very similar to those of the AISC. These design equations limit the maximum yield stress up to 360MPa and yield ratio (yield strength/tensile strength) up to 0.8. This means that the material with yield strength exceeding 360MPa could be used after verification based on the test or rational analysis for the similar connection. This paper introduces an experimental program and finite element analysis (FEA) for the circular hollow section (CHS) with a transverse gusset plate made of high-strength steel (HSB600) or structural steel (SS400) when the joints are subjected to lateral force. Comparison of the design equations with the results of FEA and test may be used for the modification of the design equations.

Earthquake Wave Propagation Using Staggered-grid Finite-difference Method in the Model of the Antarctic Region (엇격자 유한차분법을 이용한 극지해역 지진파 모델링)

  • Oh, Ju-Won;Min, Dong-Joo;Lee, Ho-Yong;Park, Min-Kyu
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.640-653
    • /
    • 2011
  • We simulate the propagation of earthquake waves in the continental margin of Antarctica using the elastic wave modeling algorithm, which is modified to be suitable for acoustic-elastic coupled media and earthquake source. To simulate the various types of earthquake source, the staggered-grid finite-difference method, which is composed of velocity-stress formulae, can be more appropriate to use than the conventional, displacement-based, finite-difference method. We simulate the elastic wave propagation generated by earthquakes combining 3D staggered-grid finite-difference algorithm composed of displacement-velocity-stress formulae with double couple mechanisms for earthquake source. Through numerical tests for left-lateral strike-slip fault, normal fault and reverse fault, we could confirm that the first arrival of P waves at the surface is in a good agreement with the theoretically-predicted results based on the focal mechanism of an earthquake. Numerical results for a model made after the subduction zone in the continental margin of Antarctica showed that earthquake waves, generated by the reverse fault and propagating through the continental crust, the oceanic crust and the ocean, are accurately described.

Evaluation of an Effective Load Transfer System Applied to a Simple Model of a Wall Frame Structural System (단순 모델을 사용한 추상복합 건물의 효율적인 전이 시스템에 관한 연구)

  • 정영일;윤석한;홍원기;김희철
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.23-29
    • /
    • 2002
  • A wall-frame type structural system has been widely used to make full use of a limited land in large cities to satisfy the several functional requirement in one building. However, this type of hybrid structure brought some problems due to the vertical discontinuity of a structural system. The response of a wall-frame type structural system having a deep transfer girder was observed. An arch system was introduced to replace the deep transfer girder. The adequacy of an arch system was observed for the various boundary conditions of a system. The proposed system was compared to a general transfer girder system by applying both gravity load and lateral load. It was observed that an arch system fairly distributes the stress without concentrating stress at a certain location of a system differently from the current transfer girder system. The moment decrement effect of a column can also be obtained by eliminating the large mass of a transfer girder. Also it was investigated that an arch system is more economical and effective than the current transfer girder system.

Utilizing chromosome segment substitution lines (CSSLs) to evaluate developmental plasticity of root systems in hardpan penetration and deep rooting triggered by soil moisture fluctuations in rice

  • Nguyen, Thi Ngoc Dinh;Suralta, Roel R.;Mana, Kano-Nakata;Mitsuya, Shiro;Stella, Owusu Nketia;Kabuki, Takuya;Yamauchi, Akira
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.321-321
    • /
    • 2017
  • Water availability in rainfed lowlands (RFL) is strongly affected by climate change. In RFL, rice plants are exposed to soil moisture fluctuations (SMF) but rarely to simple progressive drought as widely believed. Typical RFL field is characterized by a about 5-cm thick high bulk density hardpan layer underneath the cultivated layer at about 20 cm depth that impedes deep root development. Root system has the ability to develop in response to changes in SMF, known as phenotypic plasticity. We hypothesized that genotypes that can adapt to RFL have root plasticity. The roots can sharply respond to re-wetting after drought period and thus penetrate the hardpan layer when the hardpan is wet and so becomes relatively soft, and thus access water under the hardpan. This study aimed to identify CSSLs derived from a cross between Sasanishiki and Habataki which adapted to such RFL conditions. We used 39 CSSLs together with the parent Sasanishiki, which were grown in hydroponics and pot under transient soil moisture stresses (drought and then rewatering), and compared with continuously well-watered (WW) (control) up to 14 days after sowing (DAS), and 20 DAS, respectively. Based on the results of hydroponics and pot experiments, we selected a few lines, which were grown in the soil-filled rootbox with artificial hardpan layer and without artificial hardpan. For the rootbox without artificial hardpan, plants were grown under WW and transient soil moisture stresses for 49 DAS. While the rootbox with artificial hardpan, the plants were grown under WW (control) and SMF (WW up to 21 DAS, 1st drought (22-36 DAS), rewatering (37-44 DAS), and followed by 2nd drought (45-58 DAS)). Among the 39 CSSLs, only CSSL439 (SL39) consistently showed significantly higher shoot dry weight (SDW) than Sasanishiki under transient soil moisture stress conditions as well as SMF conditions in all the experiments. Furthermore, under WW, SL39 consistently showed no significant differences from Sasanishiki in shoot and root growth in most of traits examined. SL39 showed significantly greater total root length (TRL) than Sasanishiki under transient soil moisture stress, which is considered as phenotypic plasticity in response to rewatering after drought period. Such plastic root development was the key trait that effectively contributed to root elongation and branching during the rewatering period and consequently enhanced the root to penetrate hardpan layer when the soil penetration resistance at hardpan layer reduced. In addition, using the rootbox with artificial hardpan layer ($1.7g\;cm^{-3}$, heavily compacted), SL39 showed greater root system development than Sasanishiki under SMF, which was expressed in its significantly higher TRL, total nodal RL, and total lateral RL at hardpan layer as well as at below the hardpan layer. These results prove that SL39 has plasticity that enables its root systems to penetrate hardpan layer in response to rewatering. Under SMF, such root plasticity contributed to its higher gs and Pn.

  • PDF

Comparison of $^{99m}Tc-MIBI$ Myocardial Uptake at Rest with Reinjection and 24-hour after Reinjection Images of $^{201}Tl$ ($^{201}Tl$$^{99m}Tc-MIBI$에 의한 생존심근의 진단 비교 -재분포영상에 고정관류결손을 보인 환자에서 $^{201}Tl$ 재주사법 및 $^{99m}Tc-MIBI$ 휴식기스캔에 의한 심근섭취 비교-)

  • Bom, Hee-Seung;Kim, Ji-Yeul;Park, Joo-Hyung;Ahn, Young-Keun;Jeong, Myung-Ho;Cho, Jeong-Gwan;Park, Jong-Choon;Kang, Jung-Chaee
    • The Korean Journal of Nuclear Medicine
    • /
    • v.26 no.2
    • /
    • pp.274-279
    • /
    • 1992
  • Clinical role of $^{99m}Tc-MIBI$ myocardial scintigraphy in the diagnosis of coronary artery disease (CAD) is now well accepted, however, the role of it in the identification of viable myocardium in patients with chronic CAD has not yet been clarified. To determine the usefulness of rest-injected $^{99m}Tc-MIBI$ scan as a marker of myocardial viability, the regional uptake of this agent at rest was compared with that of $^{201}Tl$ on reinjection and 24 hours after reinjection images. Subject patients were 13 chronic CAD patients who showed irreversible perfusion defect(s) on standard pharmacologic (dipyridamole) stress-redistribution images. Immediately after the redistribution images were obtained, 37 MBq thallium was injected at rest, and images were reacquired at 10 minutes and 24 hours after reinjection. After then 740 MBq $^{99m}Tc-MIBI$ was injected, and 1 hour later rest MIBI myocardial imaging was performed. Five sets of imagestress, redistribution, reinjection, delayed images of thallium, and rest image of MIBI) were then analyzed qualitatively and quantitatively. Left ventricle was arbitrarily divided into 9 segments (apex, basal and apical portions of anterior, septal, inferior, and lateral walls). Seven patients and 30 regions showed a fixed perfusion defect on the stress-redistribution images. Among 30 regions, 15 showed positive uptakes and 6 showed negative uptakes on both $^{201}Tl$ reinjection/delayed images and $^{99m}Tc-MIBI$ rest images. Five regions showed only thallium uptake and were regarded as viable clinically. Of four regions which showed only $^{99m}Tc-MIBI$ uptake, two were regarded as viable, while the other two were regarded as a nonviable scar tissue clinically. In conclusion, $^{201}Tl$ reinjection technique was more reliable in the identification of viable myocardium. However, the role of $^{99m}Tc-MIBI$ in identification of viable myocardium was still remained to be clarified because 2 of 9 regions showed only $^{99m}Tc-MIBI$ uptake and were regarded as viable tissues.

  • PDF

Dynamic Characteristics of Railway Structures under High-Speed Train Loading (고속열차 주행 시 동적하중을 받는 철도구조물의 진동 특성)

  • Rhee, Inkyu;Kim, Jae Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.2
    • /
    • pp.121-128
    • /
    • 2020
  • The purpose of this study is to investigate the distribution patterns of displacement and acceleration fields in a nonlinear soil ground based on the interaction of high-speed train, wheel, rail, and ground. For this purpose, a high-speed train in motion was modeled as the actual wheel, and the vertical contact of wheel and rail and the lateral contact, caused by meandering motion, were simulated; this simulation was based on the moving mass analysis. The soil ground part was given the nonlinear behavior of the upper ground part by using the modified the Drucker-Prager model, and the changes in displacement and acceleration were compared with the behavior of the elastic and inelastic grounds. Using this analysis, the displacement and acceleration ranges close to the actual ground behavior were addressed. Additionally, the von-Mises stress and equivalent plastic strain at the ground were examined. Further, the equivalent plastic and total volumetric strains at each failure surface were examined. The variation in stresses, such as vertical stress, transverse pressure, and longitudinal restraint pressure of wheel-rail contact, with the time history was investigated using moving mass. In the case of nonlinear ground model, the displacement difference obtained based on the train travel is not large when compared to that of the elastic ground model, while the acceleration is caused to generate a large decrease.

Loading tests and strength evaluation of bogie frame for intermodal tram (인터모달 트램 대차프레임의 하중 시험 및 강도 평가)

  • Seo, Sung-il;Mun, Hyung-Suk;Moon, Ji-Ho;Suk, Myung-Eun;Kim, Jeong-guk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.554-561
    • /
    • 2016
  • In this study, loading tests and a strength evaluation of the bogie frame were conducted to verify the structural safety of the bogie system in an intermodal tram, which runs with cars on a road track. The loads were calculated taking into account the features of the road track with many sharp curves and steep gradients, which are different from the track of conventional railway. They were compared with the loads specified in the previous standard specifications. After the comparison, it was confirmed that the loads acting on the bogie system operating on a road track are slightly different from the specified loads. The specified vertical load of the standard specification for all kinds of trains is conservative, but the specified lateral and longitudinal loads are less than the calculated loads. The application of the actual loads was proven to be reasonable in the development of a new railway system. Based on the defined loads, the bogie frame was fabricated on which strain gauges were attached. It was set on the large loading frame so that the stresses could be measured when loads were applied by hydraulic actuators. After measuring the stresses, it was shown that they were below the allowable stress, which verified the structural safety of the bogie frame.

Analysis of Shear Force in Perimeter Column due to Outrigger Wall in a Tall Building (고층 건물의 아웃리거 벽체에 의한 외부 기둥의 전단력 해석)

  • Huang, Yi-Tao;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.293-299
    • /
    • 2018
  • Steel truss outriggers can be replaced by reinforced concrete walls to control the lateral drift of tall buildings. When reinforced concrete outrigger walls are connected to perimeter columns, not only axial forces but also shear forces and moments can be induced on the perimeter columns. In this study, the shear force of the perimeter column due to the rotation of the outer edge of the outrigger wall is derived as analytic equations and the result is compared with the finite element analysis result. In the finite element analysis, the effects of connecting beams at each floor and the effect of modeling shear walls and outriggers with beam element and plane stress element was analyzed. The effect of the connecting beam was almost negligible and the plane stress element was determined to have greater stiffness than the beam element. The inter-story rotation and the shear force of the perimeter column due to the rotation of the outer edge of the outrigger wall was considerably smaller than the allowable value. Therefore, even if the outrigger wall made of reinforced concrete is applied to a tall building, it is considered that there is no need to study the shear force and moment induced in the perimeter columns.

Dynamic Numerical Modeling of Subsea Railway Tunnel Based on Geotechnical Conditions and Seismic Waves (지반조건과 지진파를 고려한 해저철도 터널의 동적 수치 모델링)

  • Kwak, Chang-Won;Yoo, Mintaek
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.69-86
    • /
    • 2022
  • The railway is widely used to transport passengers and freight due to its punctuality and large transport capacity. The recent remarkable development in construction technology enables various subsea railway tunnels for continent-continent or continent-island connectivity. In Korea, design and construction experience is primarily based on the successful completion of the Boryeong subsea tunnel (2021) and the Gadeok subsea tunnel (2010). However, frequent earthquakes with diverse magnitudes, globally induced and continuously increased the awareness of seismic risks and the frequency of domestic earthquakes. The effect of an earthquake on the subsea tunnel is very complicated. However, ground conditions and seismic waves are considered the main factors. This study simulated four ground types of 3-dimensional numerical models, such as soil, rock, composite, and fractured zone, to analyze the effect of ground type and seismic wave. A virtual subsea railway shield tunnel considering external water pressure was modeled. Further, three different seismic waves with long-term, short-term, and both periods were studied. The dynamic analyses by finite difference method were performed to investigate the displacement and stress characteristics. Consequently, the long-term period wave exhibited a predominant lateral displacement response in soil and the short-term period wave in rock. The artificial wave, which had both periodic characteristics, demonstrated predominant in the fractured zone. The effect of an earthquake is more noticeable in the stress of the tunnel segment than in displacement because of confining effect of ground and structural elements in the shield tunnel. 

Widening of Bony Tunnel after ACL Reconstruction Using Hamstring Tendon with Ligament Anchor(LA) Screw (슬괵건 및 LA나사를 이용한 관절경적 전방 십자 인대 재건술 후 골터널의 확장)

  • Song Eun Kyoo;Yoon Taek Rim;Jung Jong Wook;Jeong Kwang Cheul
    • Journal of the Korean Arthroscopy Society
    • /
    • v.5 no.2
    • /
    • pp.69-73
    • /
    • 2001
  • Purpose : To evaluate the clinical results and widening of bony tunnel after anterior cruciate ligament(ACL) reconstruction using hamstring tendon with Ligament Anchor(LA) screw, which is newly designed fur fixation of graft into femur. Materials and Methods : Fifty eight patients who were followed up at least more than 2 years after ACL reconstruction with four strands of Hamstring tendon were included in this study. The graft was fixed with LA screw at femoral tunnel and with bioabsorbable interference screw at tibial tunnel. The average period of follow-up was 28 months. The clinical results such as physical examination and Lysholm knee score and radiological results. widening of bony tunnel and instrumented anterior laxity test with $Telos^{\circledR}$(Telos stress device; Austin & Associates, Inc., Polston, US) were evaluated. Results . The Lysholm knee score was 60.0 in average preoperatively and improved to 94.0 in average at follow up. On the Lachman test, there were mild(+) instability in 16 cases, moderate(++) in 24, severe(+++) in 18 preoperatively. 50 cases were converted to negative and 8 to mild instability at follow up. On instrumented anterior laxity test with $Telos^{\circledR}$, side to side difference in 20 lb was 12.9mm in average preoperatively, and was decreased to 3.1mm in average follow-up. The femoral tunnel was widened from 10.6mm postoperatively to 12.7mm$(21.1\%)$ at follow up on antero-posterior plane and from 10.7mm to 12.4mm$(16.5\%)$ on lateral plane. Tibial tunnels was also widened from 9.8mm to 11.8mm$(20.7\%)$ on antero-posterior plane and from 9.9mm to 11.7mm$(18.9\%)$ in lateral plane. Conclusion : ACL reconstruction with hamstring tendon and LA screw was one of the choice of grafts and fixatives in restoring knee stability and in improving clinical results with little complications such as excessive widening of bony tunnel.

  • PDF