• Title/Summary/Keyword: lateral stress

Search Result 807, Processing Time 0.026 seconds

A Study on Performance of Double-Core PBD for Improving Thick Reclaimed Ground (대심도 연약지반 개량을 위한 이중코어 PBD 성능연구)

  • Yang, Jeong-Hun;Hong, Sung-Jin;Lee, Woo-Jin;Choi, Hang-Seok;Kim, Hyung-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.281-292
    • /
    • 2008
  • Prefabricated Board Drains (PBDs) recently become more widely used than conventional sand drains in improving soft ground because the PBD is more time and cost effective. The performance of PBDs is affected by disturbance in the adjacent soil formation during inserting mandrels, the intrusion of fine particles into filter fabric, and necking of the drain by excessive lateral pressure especially occurring in very deep clay formation such as the Busan New Port site. In this study, the PBD with double-core is introduced, which seems to overcome the shortcomings of usual single-core PBDs. An in-situ test program was established in the Busan New Port site, in which a set of the double-core PBDs and the single-core PBDs was installed to compare the efficiency of each of the drains. The discharge capacity of the double-core and the single-core PBDs was compared for various confining pressures in the modified Delft test and the chamber test. A series of CRS consolidation tests was performed in order to obtain profiles of void ratio-effective stress and void ratio-permeability relationships in the Busan New Port site that are used as input date in performing a numerical program ILLICON. The numerically simulated settlements of ground surface in the test site are in good agreement with those of in-situ measurements. In addition, the performance of the double-core and single-core PBDs has been experimentally and numerically compared in this paper.

  • PDF

Maxillary anterior implant restoration with appropriate anterior guidance using T-Scan in a patient with full fixed prostheses (전악 고정성 보철 수복 환자에서 T-Scan 분석을 이용해 전-측방유도를 부여한 상악 임플란트 보철 수복)

  • Nam, Rae-Kyeong;Pang, Eun-Kyoung;Cho, Young-Eun;Park, Eun-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.55 no.4
    • /
    • pp.419-426
    • /
    • 2017
  • In implant restorations, it is difficult for the patient to percept any symptoms. In addition, they are absent of shock absorbers, which can lead to mechanical failure if stress distribution is not considered. Since maxillary anterior multiple-implant restorations play a significant role in guiding the functional movement of the mandible by distributing lateral force, it is crucial to form appropriate occlusion. The use of the T-scan system is more advantageous in assessing 'dynamic occlusion', such as the change of occlusion over time, the amount of tooth contact during functional movement, and assessing the occlusion in the less-visible posterior teeth. The case is reported as it has satisfactory results in harmonious anterior guidance of a maxillary anterior multiple-implant restoration using T-scan analysis.

The Fabrication of Four-Terminal Poly-Si TFTs with Buried Channel (Buried Channel 4단자 Poly-Si TFTs 제작)

  • Jeong, Sang-Hun;Park, Cheol-Min;Yu, Jun-Seok;Choe, Hyeong-Bae;Han, Min-Gu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.12
    • /
    • pp.761-767
    • /
    • 1999
  • Poly-Si TFTs(polycrystalline silicon thin film transistors) fabricated on a low cost glass substrate have attracted a considerable amount of attention for pixel elements and peripheral driving circuits in AMLCS(active matrix liquid crystal display). In order to apply poly-Si TFTs for high resolution AMLCD, a high operating frequency and reliable circuit performances are desired. A new poly-Si TFT with CLBT(counter doped lateral body terminal) is proposed and fabricated to suppress kink effects and to improve the device stability. And this proposed device with BC(buried channel) is fabricated to increase ON-current and operating frequency. Although the troublesome LDD structure is not used in the proposed device, a low OFF-current is successfully obtained by removing the minority carrier through the CLBT. We have measured the dynamic properties of the poly-Si TFT device and its circuit. The reliability of the TFTs and their circuits after AC stress are also discussed in our paper. Our experimental results show that the BC enables the device to have high mobility and switching frequency (33MHz at $V_{DD}$ = 15 V). The minority carrier elimination of the CLBT suppresses kink effects and makes for superb dynamic reliability of the CMOS circuit. We have analyzed the mechanism in order to see why the ring oscillators do not operate by analyzing AC stressed device characteristics.

  • PDF

Experimental and numerical investigations on seismic performance of a super tall steel tower

  • He, Minjuan;Li, Zheng;Ma, Renle;Liang, Feng
    • Earthquakes and Structures
    • /
    • v.7 no.4
    • /
    • pp.571-586
    • /
    • 2014
  • This paper presents experimental and numerical study on seismic performance of a super tall steel tower structure. The steel tower, with a height of 388 meters, employs a steel space truss with spiral steel columns to serve as its main lateral load resisting system. Moreover, this space truss was surrounded by the spiral steel columns to form a steel mega system in order to support a 12-story platform building which is located from the height of 230 meters to 263 meters. A 1/40 scaled model for this tower structure was made and tested on shake table under a series of one- and two-dimensional earthquake excitations with gradually increasing acceleration amplitudes. The test model performed elastically up to the seismic excitations representing the earthquakes with a return period of 475 years, and the test model also survived with limited damages under the seismic excitations representing the earthquakes with a return period 2475 years. A finite element model for the prototype structure was further developed and verified. It was noted that the model predictions on dynamic properties and displacement responses agreed reasonably well with test results. The maximum inter-story drift of the tower structure was obtained, and the stress in the steel members was investigated. Results indicated that larger displacement responses were observed for the section from the height of 50 meters to 100 meters in the tower structure. For structural design, applicable measures should be adopted to increase the stiffness and ductility for this section in order to avoid excessive deformations, and to improve the serviceability of the prototype structure.

Analysis of a Novel Self-Aligned ESD MOSFET having Reduced Hot-Carrier Effects (Hot-Carrier 현상을 줄인 새로운 구조의 자기-정렬된 ESD MOSFET의 분석)

  • 김경환;장민우;최우영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.5
    • /
    • pp.21-28
    • /
    • 1999
  • A new method of making high speed self-aligned ESD (Elevated Source/Drain) MOSFET is proposed. Different from the conventional LDD (Lightly-Doped Drain) structure, the proposed ESD structure needs only one ion implantation step for the source/drain junctions, and makes it possible to modify the depth of the recessed channel by use of dry etching process. This structure alleviates hot-carrier stress by use of removable nitride sidewall spacers. Furthermore, the inverted sidewall spacers are used as a self-aligning mask to solve the self-align problem. Simulation results show that the impact ionization rate ($I_{SUB}/I_{D}$) is reduced and DIBL (Drain Induced Barrier Lowering) characteristics are improved by proper design of the structure parameters such as channel depth and sidewall spacer width. In addition, the use of removable nitride sidewall spacers also enhances hot-carrier characteristics by reducing the peak lateral electric field in the channel.

  • PDF

Measurements of Turbulent How in $5\times{5}$ PWR Rod Bundles With Spacer Grids (지지격자를 갖는 $5\times{5}$ PWR 봉다발에서의 난류유동 측정)

  • Yang, Sun-Kyu;Chung, Heung-June;Chun, Se-Young;Chung, Moon-Ki
    • Nuclear Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.263-273
    • /
    • 1992
  • The study on the velocity distribution and the pressure drop characteristic of the nuclear fuel assembly is of importance for the thermal hydraulic design and safety analysis. The purpose of this experimental study is to investigate the hydraulic mixing behind the different kinds of spacer grids in the now or rod bundles. In this study, the detailed hydraulic characteristics in subchannels of 5$\times$5 PWR(Pressurized Water Reactor) rod bundles were measured using one-component He-Ne LDV(Laser Doppler Velocimeter). Measurements of the axial velocity, turbulent intensities and pressure drops were peformed Lateral velocity, turbulent intensities and Reynolds shear stress were also measured by adjust-ing LDV alignment. Friction factors in rod bundles and loss coefficients for spacer grids were evaluated from the measured pressure drops. Hydraulic mixing performance for different kinds of spacer grids could be investigated by estimating the turbulent cross-flow mixing rates between neighboring subchannels.

  • PDF

Non-linear analysis of side-plated RC beams considering longitudinal and transversal interlayer slips

  • Kolsek, Jerneja;Hozjan, Tomaz;Kroflic, Ales;Saje, Miran;Planinc, Igor
    • Steel and Composite Structures
    • /
    • v.16 no.6
    • /
    • pp.559-576
    • /
    • 2014
  • A new mathematical model and its finite element formulation for the non-linear stress-strain analysis of a planar beam strengthened with plates bolted or adhesively bonded to its lateral sides is presented. The connection between the layers is considered to be flexible in both the longitudinal and the transversal direction. The following assumptions are also adopted in the model: for each layer (i.e., the beam and the side plates) the geometrically linear and materially non-linear Bernoulli's beam theory is assumed, all of the layers are made of different homogeneous non-linear materials, the debonding of the beam from the side-plates due to, for example, a local buckling of the side plate, is prevented. The suitability of the theory is verified by the comparison of the present numerical results with experimental and numerical results from literature. The mechanical response arising from the theoretical model and its numerical formulation has been found realistic and the numerical model has been proven to be reliable and computationally effective. Finally, the present formulation is employed in the analysis of the effects of two different realizations of strengthening of a characteristic simply supported flexural beam (plates on the sides of the beam versus the tension-face plates). The analysis reveals that side plates efficiently enhance the bearing capacity of the flexural beam and can, in some cases, outperform the tensile-face plates in a lower loss of ductility, especially, if the connection between the beam and the side plates is sufficiently stiff.

Experimental study on hysteretic behavior of steel moment frame equipped with elliptical brace

  • Jouneghani, Habib Ghasemi;Haghollahi, Abbas
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.891-907
    • /
    • 2020
  • Many studies reveal that during destructive earthquakes, most of the structures enter the inelastic phase. The amount of hysteretic energy in a structure is considered as an important criterion in structure design and an important indicator for the degree of its damage or vulnerability. The hysteretic energy value wasted after the structure yields is the most important component of the energy equation that affects the structures system damage thereof. Controlling this value of energy leads to controlling the structure behavior. Here, for the first time, the hysteretic behavior and energy dissipation capacity are assessed at presence of elliptical braced resisting frames (ELBRFs), through an experimental study and numerical analysis of FEM. The ELBRFs are of lateral load systems, when located in the middle bay of the frame and connected properly to the beams and columns, in addition to improving the structural behavior, do not have the problem of architectural space in the bracing systems. The energy dissipation capacity is assessed in four frames of small single-story single-bay ELBRFs at ½ scale with different accessories, and compared with SMRF and X-bracing systems. The frames are analyzed through a nonlinear FEM and a quasi-static cyclic loading. The performance features here consist of hysteresis behavior, plasticity factor, energy dissipation, resistance and stiffness variation, shear strength and Von-Mises stress distribution. The test results indicate that the good behavior of the elliptical bracing resisting frame improves strength, stiffness, ductility and dissipated energy capacity in a significant manner.

Effects of Compound Angle, Diffuser Angle, and Hole Pitch on Film-cooling Effectiveness (막냉각 홀의 측면 방향 분사각, 확장각 및 주기가 막냉각 효율에 미치는 영향)

  • Kim, Sun-Min;Lee, Ki-Don;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.9
    • /
    • pp.903-913
    • /
    • 2011
  • A numerical study is carried out to analyze the steady three-dimensional turbulent flow through cylindrical and fan-shaped holes and the film cooling of these holes at low and high blowing ratios. Compressible Reynoldsaveraged Navier-Stokes equations and the energy equation are solved using a finite-volume-based solver, and a shearstress transport model is used as the turbulence closure. The effects of the compound angle, pitch to diameter ratio, and lateral expansion angle of the hole on the film-cooling effectiveness are evaluated by the film-cooling effectiveness. It is observed that the compound angle of the hole enhances the film performance for the cylindrical hole, and a small hole pitch induces interactions between the coolants from the adjacent holes, thus reducing the film-cooling performance.

CFD Study on the Influence of Atmospheric Stability on Near-field Pollutant Dispersion from Rooftop Emissions

  • Jeong, Sang Jin;Kim, A Ra
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.1
    • /
    • pp.47-58
    • /
    • 2018
  • The aim of this work is to investigate the effect of atmospheric stability on near-field pollutant dispersion from rooftop emissions of a single cubic building using computational fluid dynamics (CFD). This paper used the shear stress transport (here after SST) k-${\omega}$ model for predicting the flow and pollutant dispersion around an isolated cubic building. CFD simulations were performed with two emission rates and six atmospheric stability conditions. The results of the simulations were compared with the data from wind tunnel experiments and the result of simulations obtained by previous studies in neutral atmospheric condition. The results indicate that the reattachment length on the roof ($X_R$) obtained by computations show good agreement with the experimental results. However, the reattachment length of the rooftop of the building ($X_F$) is greatly overestimated compared to the findings of wind tunnel test. The result also shows that the general distribution of dimensionless concentration given by SST k-${\omega}$ at the side and leeward wall surfaces is similar to that of the experiment. In unstable conditions, the length of the rooftop cavity was decreased. In stable conditions, the horizontal velocity in the lower part around the building was increased and the vertical velocity around the building was decreased. Stratification increased the horizontal cavity length and width near surface and unstable stratification decreased the horizontal cavity length and width near surface. Maintained stability increases the lateral spread of the plume on the leeward surface. The concentration levels close to the ground's surface under stable conditions were higher than under unstable and neutral conditions.